Effective Ruby on Rails
Development Using CodeGear’s
Ruby IDE

Shelby Sanders
Principal Engineer
CodeGear

Copyright ©2007 CodeGear. All Rights Reserved.

Web Application Expectatidhs =

Dynamic

« Static web pages and images are not enough
Interactive

* Rich-client functionality is becoming the norm
Persistent

» Data and preferences integrated throughout
Flexible

* Retarget content to mobile devices, feeds, web
services

Copyright ©2007 CodeGear. All Rights Reserved.

Ruby Background

Object-Oriented
 Everything is an Object

» Everything is extensible 1= class Object _

2 def print_greeting
3 puts "Hello World!"
4 end
5 end
6 96.print_greeting()
7

1 "abc".slice(l, 2) 8

2 9- module Helper

3 1.2.finite?() 10 def do_work

4 11 puts "..."

5 96.modulo(7) 12 end

6 13 end

7 true.instance_of?(TrueClass) 14 message = "abc"

8 15 message.extend(Helper)

9 nil.nil?() 1§ message . do_work()

Copyright ©2007 CodeGear. All Rights Reserved.

Ruby Background

“Duck” Typing (Dynamic Typing)

* If something walks like a duck and quacks like a
duck, then it can be treated as if it is a duck

number = 96
puts number.modulo(7)

count = 1@
count.times do

puts "."
end

o~ OV B WM

(L=}

11 letters = ["a","b","c"]
12 letters.each {lil puts "#{i}" }

Copyright ©2007 CodeGear. All Rights Reserved.

Ruby Background

Blocks (Closures)

* Arbitrary sections of code which can be passed
around while retaining original context

blockl = lambda { puts "." }
block2 = lambda do

1+1
end
10.times { blockl.call }
puts block2.call

CoO~ O U W N

def perform(items, &action)

9 items.each do liteml

10 yield(item)

11 end

12 end

13 letters = ["a","b","c"]

14 perform(letters) { |letter| puts letter }

Copyright ©2007 CodeGear. All Rights Reserved.

Ruby Background

Modules

* Collections of functionality which can be attached
to Classes or Objects

» Equivalent of Interfaces, Multiple Inheritance, and

Aspects
1-module Logging 1= class Item
2 def log(message) 2 include Logging
3 puts message 3 include Validation
4 end 4 def validate()
5 end 5 log("Validating Item...™)
6 6 nil
7-module Validation 7 end
8 def valid?() 8 end
9 self.validate.nil? 9 i = Item.new()
10 end 10 i.valid?
11 end

Copyright ©2007 CodeGear. All Rights Reserved.

Ruby Background

Method Missing Handler

* Allows dynamic instrumentation of functionality at

runtime
1-module LogMissing
2 def method_missing(method_id, *args)
3 arity = largs.nil? 8& args.length > @ ? args.length.to_s : "'
4 puts "Attempt to call #{self.class.name}.#{method_id.id2name}(#{arity})"
5 end
6 end
7
8= class Item
9 include LogMissing
10 end
11 1 = Item.new
12 1.missing() # Results in "Attempt to call Item.missing()"
13 i.testing(1, 2, 3) # Results in "Attempt to call Item.testing(3)"

Copyright ©2007 CodeGear. All Rights Reserved.

Ruby Background

Lenient Syntax

* Most punctuation is optional,
including parentheses around
method parameters and
semicolons as line endings

"ﬂbC";
"abe"

varl
var?
index = varl.index "b"

1
2
» Enables natural creation of a .

Domain Specific Language 4 . Slicect, 2
(DSL) for the task at hand 7 varl.slice 1, 2
5
10
11

varl.slice 1, index

10.times do
12 puts "."
13 end
14 1@.times { puts "." }

Copyright ©2007 CodeGear. All Rights Reserved.

Rails Background

Extracted from Reality

* All features have been used in multiple production
applications before being added to the framework

» Features are evolved based on the experience of
the development community

» Deprecation is used to support legacy applications,
while allowing the framework and community to
move forward

Copyright ©2007 CodeGear. All Rights Reserved.

Rails Background

Opinionated Software

* Designed around the most common scenarios,
instead of trying to be everything for everyone

» Chooses a default configuration which satisfies the
most common scenarios

» Enforces best practices by default, but allows
deviation when necessary

 For instance, the Model-View-Controller pattern is
naturally enforced by the application generators,
layout, and lifecycle

Copyright ©2007 CodeGear. All Rights Reserved.

Rails Background

Convention over Configuration
- Every Rails application has v %g’mmm”ers
the same layout on disk > = helpers
» All common components have P = models
predefined locations b (= views
p = config
 Accepting the default layout » =db
and configuration, enables b = public
most routing and mapping to v (= test
be done automatically b (= fixtures
= functional
= integration
p = mocks
B = unit

Copyright ©2007 CodeGear. All Rights Reserved.

Rails Background

Don't Repeat Yourself (DRY)
« All configuration and logic should be defined once

* For instance, database schema and structure of
model classes doesn’t overlap, instead they
depend on each other to define the whole picture

T class Post < ActiveRecord::Base 1 class CreatePosts < ActiveRecord::Migration
5 2 def self.up
3| has_many :comments 3 create_table :posts do \.tl
4 - 4 t.column :title, :string
5 5 t.column :content, :text
6 wvalidates_presence_of :title g enznd
7 wvalidates_uniqueness_of :title 3
8
1; validates_presence_of :content l; de;r;;j:;ﬁ?:n:posts
11 end 11 end

12 end

Copyright ©2007 CodeGear. All Rights Reserved.

Rails Background

Model-View-Controller support

Full Stack Framework

» All common functionality for database-driven web
applications

» Object/Relational mapping

AJAX libraries and helpers

Web services support

Embedded development server

» Test management

Copyright ©2007 CodeGear. All Rights Reserved.

Rails Development

* No need to evaluate, learn, and maintain
dependency on multiple third-party frameworks

Models
Migrations
Controllers
Scaffolds (Views)
Web services
Tests

Plugins

Copyright ©2007 CodeGear. All Rights Reserved.

Component Generation

» All major components are generated via built-in or easily
acquired third-party plugins, including:

>script/generate model Comment author:string ...

exists
exists
exists
create
create
create

app/models/

test/unit/

test/fixtures/
app/models/comment.rb
test/unit/comment test.rb
test/fixtures/comments.yml

Rails Development

Scaffolding

» Provides default implementation of Create, Read, Update,
and Delete (CRUD) Views

* Provided via dynamic instrumentation or static code
generation

» Supports incremental replacement at the Action granularity

1- class PostsController < ApplicationController

2

3 scaffold :post >script/generate scaffold Post Post
4 exists app/controllers/

5 end exists app/helpers/

exists app/views/post
exists app/views/layouts/
exists test/functional/

dependency model

exists app/models/
exists test/unit/

07 CodeGear. All Right:

Rails Development

Change Recognition

» Automatic recognition of artifact changes and update of
application at runtime

» The following changes are integrated without a server restart:
» Creation of application components
» Modification of database schema including relationships
» Changes in Model, View, and Controller logic

» Routing changes are the exception

Copyright ©20

Rails Development

"Automagic" Object/Relational Mapping

 All Model schema, relationship, and validation information is
defined only once

» Most schema information is defined using database-agnostic

syntax
» Special cases are defined using the same artifacts

T closs Post < ActiveRecord: -Base 1- class CreatePosts < ActiveRecord::Migration
2 2 def self.up

3 has_many :comments 3 create_table :posts do |tl
4 -many - 4 t.column :title, :string
5 5 t.column :content, :text
6 wvalidates_presence_of :title g :nd

7 validates_uniqueness_of :title P en

8

. 9- def self.down
13 validates_presence_of :content 10 drop_table :posts
11 end 11 end
12 end

7 CodeGear. All Rights Reserved

Rails Development

"Automagic" Object/Relational Mapping
(Continued)

» Most model client API is dynamically instrumented at runtime

1- def test_post_client

2 @post = Post.new(:title => 'Testing 1, 2, 3',
:content => 'This is a test.',
cviews => 0,

:created_at => Time.now)

3
4
5
6 @post.save
7
8

@current_title = @post.title
9 @post.content = "New Content'

11 @posts = Post.find(:all)
12 @post = Post.find_by_1d(3)
13 @post = Post.find_by_title('Hello World!')

15 @comment = @post.comments.first
16 @parent_post = @comment.post
17 end

7 CodeGear. All Rights Reserved

Rails Development

Context Propagation

* Request and session data are easily transformed into
database objects

» Appropriate contextual objects defined in Controller are
automatically propagated to Views

1 class PostsController < ApplicationController

2 def show

3 @post = Post.find(params[:id])

4 end

5 end
1<% for column in Post.content_columns %>
2 <p>
3 <%= column.human_name %>: <%=h @post.send(column.name) %>
4 </p>
5<% end %>
6

7 <%= link_to "Edit', :action => 'edit', :id =»> @post %> |
8 <%= link_to '"Back', :action => 'list' %>

Copyright ©2007 CodeGear. All Rights Reserved.

Rails Development

Code Generation Support
» Defined via server-side Ruby code
» Generates client-consumed JavaScript, XML, etc

page.select("div#notice”).each { ldivl div.hide }

1
2
3 page.replace_html("post" , :partial => "post" , :object => @post)
4
5

page[:post].visual_effect :blind down if @post.comments.length > @

1 xml.posts do

2 for post in @posts

3 xml .post do

4 xml.title(post.title)

5 xml.content(post.content)

6 xml.views(post.views)

7 xml.created_at(post.created_at)
8
9
Q

1

Copyright ©2007 CodeGear. All Rights Reserved.

Rails Development

Testing

* Integrated generation of functional, integration, and unit tests
when creating application components

» Automation and reusability via mocks, stubs, and fixtures
» Leverages standard Ruby testing framework (Test::Unit)

 Helper functionality for common web application assertions

Support

lon

e:
id: 1

title: Titlel
content: Contentl
views: 1

0:

id: 2

title: Title2
content: Content2
views: 2

1- def test_blog_index

2 get "/blog/index"

3 assert_response :SuCCESS
4 assert_template "index"
5 end

Rails Development

Web Se

* Built-in support for REST, SOAP, and XML-RPC
» Automatic dispatch and marshalling, just like any other view

rvices

class BlogInfoApi < ActionWebService::API::Base

api_method :find_all_posts

api_method :find_comments_by_post

end

served.

1- class BlogInfoController < ApplicationController
2 wsdl_service_name 'BlogInfo'

3

4~ def find_all_posts

5 @posts = Post.find(:all)

6 end

7

8 def find_comments_by_post

9 @post = Post.find(params[:id])
10 @comments = @post.comments

11 end

12 end

7 CodeGear. All Rights

Product Overview

Initiation
» Complete runtime environment provided during
install
* Includes Ruby, Rails, gems, plugins, and databases
* Wizards

« Provide logical creation of application components via
composite code generation

» Cheat sheets and instructional videos
» Teach usage of Rails and IDE at the same time

Copyright ©2007 CodeGear. All Rights Reserved.

Product Overview

Code Generation and Manipulation

* Integrated command line environment
» Provides natural access to Rails helper scripts
» Enhanced by contextual information from IDE

* Ruby and Rails specific code completion and
refactoring

* Leverages type information based on framework
semantics and conventions

¢ Includes information for dynamically instrumented
functionality

Copyright ©2007 CodeGear. All Rights Reserved.

Product Overview

Archaeology

* Analysis of artifact dependencies regardless of
location and format

* Visualization of inbound and outbound
dependencies of the current selection

Navigation

* Actions enabling seamless movement between
collaborating artifacts

» Correlation of URLs to associated actions and
vice-versa

Copyright ©2007 CodeGear. All Rights Reserved.

Product Overview

Running

* Embedded development server runs application in
place

« Embedded Mozilla web browser enables realistic
inspection of DOM, request lifecycle, and
contextual information

Debugging

* Multiple language support including Ruby and
JavaScript

* Integrated display of Rails-specific contextual
information

Copyright ©2007 CodeGear. All Rights Reserved.

References

Release Information
» Available in the second half of 2007
* Windows, Mac OS X, RedHat Linux

* Pricing has not yet been set
Product Site

* http://www.codegear.com/products/rubyide

Beta Test Signup

» Contact CodeGear staff!

Copyright ©2007 CodeGear. All Rights Reserved.

