
1

Copyright ©2007 CodeGear. All Rights Reserved. 2007/6/14

Effective Ruby on Rails 
Development Using CodeGear’s 
Ruby IDE
Shelby Sanders
Principal Engineer
CodeGear

Copyright ©2007 CodeGear. All Rights Reserved. 2

Web Application Expectations

Dynamic
• Static web pages and images are not enough

Interactive
• Rich-client functionality is becoming the norm

Persistent
• Data and preferences integrated throughout

Flexible
• Retarget content to mobile devices, feeds, web 

services



2

Copyright ©2007 CodeGear. All Rights Reserved. 3

Ruby Background

Object-Oriented
• Everything is an Object

• Everything is extensible

Copyright ©2007 CodeGear. All Rights Reserved. 4

Ruby Background

“Duck” Typing (Dynamic Typing)
• If something walks like a duck and quacks like a 

duck, then it can be treated as if it is a duck



3

Copyright ©2007 CodeGear. All Rights Reserved. 5

Ruby Background

Blocks (Closures)
• Arbitrary sections of code which can be passed 

around while retaining original context

Copyright ©2007 CodeGear. All Rights Reserved. 6

Ruby Background

Modules
• Collections of functionality which can be attached 

to Classes or Objects

• Equivalent of Interfaces, Multiple Inheritance, and 
Aspects



4

Copyright ©2007 CodeGear. All Rights Reserved. 7

Ruby Background

Method Missing Handler
• Allows dynamic instrumentation of functionality at 

runtime

Copyright ©2007 CodeGear. All Rights Reserved. 8

Ruby Background

Lenient Syntax
• Most punctuation is optional, 

including parentheses around 
method parameters and 
semicolons as line endings

• Enables natural creation of a 
Domain Specific Language 
(DSL) for the task at hand



5

Copyright ©2007 CodeGear. All Rights Reserved. 9

Rails Background

Extracted from Reality
• All features have been used in multiple production 

applications before being added to the framework

• Features are evolved based on the experience of 
the development community

• Deprecation is used to support legacy applications, 
while allowing the framework and community to 
move forward

Copyright ©2007 CodeGear. All Rights Reserved. 10

Rails Background

Opinionated Software
• Designed around the most common scenarios, 

instead of trying to be everything for everyone
• Chooses a default configuration which satisfies the 

most common scenarios
• Enforces best practices by default, but allows 

deviation when necessary
• For instance, the Model-View-Controller pattern is 

naturally enforced by the application generators, 
layout, and lifecycle



6

Copyright ©2007 CodeGear. All Rights Reserved. 11

Rails Background

Convention over Configuration
• Every Rails application has 

the same layout on disk

• All common components have 
predefined locations

• Accepting the default layout 
and configuration, enables 
most routing and mapping to 
be done automatically

Copyright ©2007 CodeGear. All Rights Reserved. 12

Rails Background

Don't Repeat Yourself (DRY)
• All configuration and logic should be defined once

• For instance, database schema and structure of 
model classes doesn’t overlap, instead they 
depend on each other to define the whole picture



7

Copyright ©2007 CodeGear. All Rights Reserved. 13

Rails Background

Full Stack Framework
• All common functionality for database-driven web 

applications
• Object/Relational mapping
• Model-View-Controller support
• AJAX libraries and helpers
• Web services support
• Embedded development server
• Test management

• No need to evaluate, learn, and maintain 
dependency on multiple third-party frameworks

Copyright ©2007 CodeGear. All Rights Reserved. 14

Rails Development

Component Generation
• All major components are generated via built-in or easily 

acquired third-party plugins, including:
• Models

• Migrations

• Controllers

• Scaffolds (Views)

• Web services

• Tests

• Plugins



8

Copyright ©2007 CodeGear. All Rights Reserved. 15

Rails Development

Scaffolding
• Provides default implementation of Create, Read, Update, 

and Delete (CRUD) Views

• Provided via dynamic instrumentation or static code 
generation

• Supports incremental replacement at the Action granularity

Copyright ©2007 CodeGear. All Rights Reserved. 16

Rails Development

Change Recognition
• Automatic recognition of artifact changes and update of 

application at runtime

• The following changes are integrated without a server restart:

• Creation of application components

• Modification of database schema including relationships

• Changes in Model, View, and Controller logic

• Routing changes are the exception



9

Copyright ©2007 CodeGear. All Rights Reserved. 17

Rails Development

"Automagic" Object/Relational Mapping
• All Model schema, relationship, and validation information is 

defined only once

• Most schema information is defined using database-agnostic 
syntax

• Special cases are defined using the same artifacts

Copyright ©2007 CodeGear. All Rights Reserved. 18

Rails Development

"Automagic" Object/Relational Mapping 
(Continued)

• Most model client API is dynamically instrumented at runtime



10

Copyright ©2007 CodeGear. All Rights Reserved. 19

Rails Development

Context Propagation
• Request and session data are easily transformed into 

database objects

• Appropriate contextual objects defined in Controller are 
automatically propagated to Views

Copyright ©2007 CodeGear. All Rights Reserved. 20

Rails Development

Code Generation Support
• Defined via server-side Ruby code

• Generates client-consumed JavaScript, XML, etc



11

Copyright ©2007 CodeGear. All Rights Reserved. 21

Rails Development

Testing Support
• Integrated generation of functional, integration, and unit tests

when creating application components

• Automation and reusability via mocks, stubs, and fixtures

• Leverages standard Ruby testing framework (Test::Unit)

• Helper functionality for common web application assertions

Copyright ©2007 CodeGear. All Rights Reserved. 22

Rails Development

Web Services
• Built-in support for REST, SOAP, and XML-RPC

• Automatic dispatch and marshalling, just like any other view



12

Copyright ©2007 CodeGear. All Rights Reserved. 23

Product Overview

Initiation
• Complete runtime environment provided during 

install
• Includes Ruby, Rails, gems, plugins, and databases

• Wizards
• Provide logical creation of application components via 

composite code generation

• Cheat sheets and instructional videos
• Teach usage of Rails and IDE at the same time

Copyright ©2007 CodeGear. All Rights Reserved. 24

Product Overview

Code Generation and Manipulation
• Integrated command line environment

• Provides natural access to Rails helper scripts
• Enhanced by contextual information from IDE

• Ruby and Rails specific code completion and 
refactoring

• Leverages type information based on framework 
semantics and conventions

• Includes information for dynamically instrumented 
functionality



13

Copyright ©2007 CodeGear. All Rights Reserved. 25

Product Overview

Archaeology
• Analysis of artifact dependencies regardless of 

location and format
• Visualization of inbound and outbound 

dependencies of the current selection

Navigation
• Actions enabling seamless movement between 

collaborating artifacts
• Correlation of URLs to associated actions and 

vice-versa

Copyright ©2007 CodeGear. All Rights Reserved. 26

Product Overview

Running
• Embedded development server runs application in 

place
• Embedded Mozilla web browser enables realistic 

inspection of DOM, request lifecycle, and 
contextual information

Debugging
• Multiple language support including Ruby and 

JavaScript
• Integrated display of Rails-specific contextual 

information



14

Copyright ©2007 CodeGear. All Rights Reserved. 27

References

Release Information
• Available in the second half of 2007

• Windows, Mac OS X, RedHat Linux

• Pricing has not yet been set

Product Site
• http://www.codegear.com/products/rubyide

Beta Test Signup
• Contact CodeGear staff!


