
Advanced Language Features of Delphi

David Intersimone “David I”
Vice President, Developer Relations and Chief Evangelist

1

Agenda
• Generics – types and methods
• Anonymous Methods
• Inline functions and procedures
• Class declarations

– Nested classes, Abstract classes, Sealed classes
– Static class methods, Static properties, and Final methods
– Scope directives: strict private and strict protected
– Class constants, Class helpers

• Enhanced RTTI, Custom attributes
• Class Constructors and Class Destructors
• Exit procedure - takes optional Result parameter
• for-in loop
• Delayed – delay loading DLLs
• Operator overloading
• Unicode strings

2

Generics – types and methods

• <T> - type T is provided later
TKeyValue<T> = class

private

FKey: string;

FValue: T;

procedure SetKey(const Value: string);

procedure SetValue(const Value: T);

public

property Key: string read FKey write SetKey;

property Value: T read FValue write SetValue;

end;

• unit Generics.Collections
– TList, TObjectList
– TQueue, TObjectQueue
– TStack, TObjectStack
– TDictionary, TObjectDictionary

Anonymous Methods

• A procedure or function that does not have a name associated
with it.

// declare anonymous method and save it as the reference

proc := procedure(a: Integer) begin ... end;

Call(proc);

// anonymous method declared and used as a parameter

Call(procedure(a: Integer) begin ... end);

• Can be assigned to a variable or used as a parameter to a
method.

• Can refer to variables and bind values to the variables in the
context in which the method is defined.

• You don’t have to create a class to hold the method(s)

4

Inline functions and procedures

• Inline directive
function MaxInline(const X,Y,Z: Integer): Integer;inline;

function MaxNotInline(const X,Y,Z: Integer): Integer;

• Inline is a suggestion to the compiler
• If the function or procedure meets certain criteria, the compiler

will insert code directly – see the next two slides for the criteria

5

Inline Criteria

• Cannot be inlined
– Late-bound methods (virtual, dynamic, and message).
– Routines containing assembly code
– Constructors and destructors
– Main program block, unit initialization, and unit finalization
– Routines that are not defined before use
– Routines that take open array parameters
– Circularly dependent units, indirect circular dependencies,
– Routine defined in the interface section that accesses symbols

defined in the implementation section
– Procedures and functions used in conditional expressions in While-

Do and Repeat-Until

6

Inline Criteria

• Might be inlined
– The compiler can inline code when a unit is in a circular dependency,

as long as the code to be inlined comes from a unit outside the
circular relationship.

– If a routine marked with inline uses external symbols from other
units, all of those units must be listed in the uses statement,
otherwise the routine cannot be inlined.

– Within a unit, the body for an inline function should be defined before
calls to the function are made. Otherwise, the body of the function,
which is not known to the compiler when it reaches the call site,
cannot be expanded inline.

7

Strict Private and Strict Protected

• Strict private: creates a true private field, not viewable by any
other class, not even classes in the same unit.

• Strict protected: creates a true protected member, visible only to
the declaring class and its descendents.

TMyClass = class
private
FPrivate : integer;

strict private
FStrictPrivate : integer;

protected
FProtected : integer;

strict protected
FStrictProtected : integer;

public
FPublic : integer;
procedure CallMe;

end;

8

Nested Classes

type
TOuterClass = class
strict private MyField: Integer;
public

type
TInnerClass = class
public

MyInnerField: Integer;
procedure InnerProc;

end;
procedure OuterProc;

end;

procedure TOuterClass.TInnerClass.InnerProc;
begin

...
end;

9

Abstract and Sealed Classes, Final Methods

TAbstractClass = class abstract

Public

procedure Bar; virtual;

end;

TSealedClass = class sealed(TAbstractClass)

public

procedure Bar; override;

end;

TFinalMethodClass = class(TAbstractClass)

public

procedure Bar; override; final;

end;

10

Static Class Methods and Class Properties

type TMyClass = class
strict private

class var FX: Integer;
strict protected

// Note: accessors for class properties must be declared
static.

class function GetX: Integer; static;
class procedure SetX(val: Integer); static;

public
class property X: Integer read GetX write SetX;
class procedure StatProc(s: String); static;

end;

TMyClass.X := 17;
TMyClass.StatProc('Hello');

11

Class Constants

• Class constants
• Constant value associated with the class itself
• Not associated with an instance of the class

TClassWithConstant = class

public

const SomeConst = 'This is a class constant';

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

ShowMessage(TClassWithConstant.SomeConst);

end;

12

Class Helpers

• Class helpers
• Introduces additional method names and properties
• A way to extend a class without using inheritance
• When you declare a class helper, you state the helper name, and the name

of the class you are going to extend with the helper.
• You can use the class helper any place where you can legally use the

extended class.

TMyClassHelper = class helper for TMyClass

procedure HelloWorld;

function MyFunc: Integer;

end;

13

Enhanced RTTI
• Roughly similar to .NET and Java reflection
• New unit: RTTI.pas
• TRttiObject class, TRttiContext record
• Run time information includes all types

– Classes and all other user defined types
– Core data types predefined by the compiler
– Published fields as well as public ones
– Protected and private elements

for aType in package.GetTypes

for aMethod in aType.GetMethods

if aMethod.HasAttribute then (...)

RTTI Descriptors

• RTTI objects live in a graph
– TRttiMethod has declaring type and parameters
– TRttiParameter has parameter type and owner
– Cycles

• Descriptor <=> RTTI object instance
– Descriptor not bound to a context
– Migration of instance from one context to another
– Caching only interesting RTTI instances for later

Method Invocation

• TRttiMethod.Invoke
– Invoke instance, class and class static methods

• TRttiConstructor.Invoke
– Dynamically construct instances without needing virtual constructors and

metaclasses
– Required for general custom attribute support

• Delphi 2010 RTTI Contexts: how they work, and a usage note
– http://blog.barrkel.com/2010/01/delphi-2010-rtti-contexts-how-they-work.html

http://blog.barrkel.com/2010/01/delphi-2010-rtti-contexts-how-they-work.html�

TValue – a simple top type

• Is a tuple of raw value data and type info
– Does not support operators, methods, etc.
– Not a replacement for Variant

• Conversions in:
– Has implicit conversions where possible
– Has explicit generic conversion for other types

• Conversions out:
– Runtime typed with explicit type (generic)
– Untyped access to underlying bytes

• “TValue is the type used to marshal values to and from RTTI-
based calls to methods, and reads and writes of fields and
properties.”

Custom Attributes

• Same syntax as Delphi for .NET
– All attributes descend from TCustomAttribute

type
[MyAttribute]
TMyClass = class … end;
MyAttribute = class(TCustomAttribute) … end;

• Only simple types allowed in constructors
– Ordinal types – integers, characters, enums
– Strings
– Type references

• RTTI objects have GetAttributes method
– Attributes are owned by the RTTI object, and therefore implicitly part of the

context

Class Constructors and Class Destructors

• Class Constructor - code used to initialize the class itself and
executed before any initialization code.

• Class Destructor – code executed after any finalization code.
• Code is linked only if the class is used.
• Better encapsulation, better control over smart linking,

compatibility with Delphi Prism.
MyException = class(Exception)

private

class constructor Create;

class destructor Destroy;

end;

19

Exit procedure

• You can provide an optional Result parameter

for I := 0 to sl.Count do

if Pos (IntToStr (n), sl[I]) > 0 then begin

Result := sl[I];

Exit;

end;

end;

for I := 0 to sl.Count do

if Pos (IntToStr (n), sl[I]) > 0 then

Exit (sl[I]);

end;

20

For-in loop

• for index in variable do
var
IArray1: array[0..9] of Integer = (1,2,3,4,5,6,7,8,9,10);
I: Integer;

begin
for I in IArray1 do begin

ShowMessage(I) ;
end;

end;

var
character : 'a' .. 'z';

begin
for character in [Low(character) .. High(character)] do

begin
ShowMessage(character) ;

end;
end;

21

Delayed directive

• Used for delay loading of DLLs
procedure APICall(Param1, Param2: Integer); stdcall;

external 'kernel32.dll’ name 'APICall';

procedure APICall(Param1, Param2: Integer); stdcall;

external 'kernel32.dll' name 'APICall' delayed;

• Instructs the linker to generate the external API reference
differently in the executable binary

• Rather than generating the import in the normal “Imports” section
of the executable’s PE file, it is generated into the “Delayed
Imports” section.

• Delphi RTL will take care of the ugly “late-binding” code you
usually have to write.

• RTL has a generic function that does the lookup and binds the API
for first call. Subsequent calls are as fast as a normal import.

22

Operator Overloading

• The name of the operator function maps to a symbolic
representation in source code (ie: “Add” operator maps to “+”)

• Compiler generates call to the appropriate implementation based
on matching the context to the signature of the operator function.

• Overloaded operator names:
– Conversion: Implicit, Explicit
– Unary: Negative, Positive, Inc, Dec, LogicalNot, Trunc, Round
– Set: In
– Comparison: Equal, NotEqual, GreaterThan, GreaterThanOrEqual,

LessThan, LessThanOrEqual
– Binary: Add, Subtract, Multiple, Divide, IntDivide, Modulus, LeftShift,

RightShift,LogicalAnd, LogicalOr, LogicalXor, BitwiseAnd, BitwiseOr,
BitwiseXor

23

Unicode Strings and Chars

• Since Delphi 2009: string = Unicode string, char = Unicode char
• 1,2,4 bytes per character
• AnsiString, AnsiChar, pAnsiString, pAnsiChar
• AnsiString(codepage)
• I/O streaming impacts – LoadFromFile, SaveToFile, …
• TEncoding class
• RTL modified to do a lot of conversion “under the covers”

24

Q & A

26

Thank You 

davidi@embarcadero.com

27

	Advanced Language Features of Delphi
	Agenda
	Generics – types and methods
	Anonymous Methods
	Inline functions and procedures
	Inline Criteria
	Inline Criteria
	Strict Private and Strict Protected
	Nested Classes
	Abstract and Sealed Classes, Final Methods
	Static Class Methods and Class Properties
	Class Constants
	Class Helpers
	Enhanced RTTI
	RTTI Descriptors
	Method Invocation
	TValue – a simple top type
	Custom Attributes
	Class Constructors and Class Destructors
	Exit procedure
	For-in loop
	Delayed directive
	Operator Overloading
	Unicode Strings and Chars
	Q & A
	スライド番号 26
	スライド番号 27

