
RAD Studio XE3

Windows 8

Visual LiveBindings

Metropolis UI C++11

C99

Mac OS X
Mountain Lion

64-bit

Boost

The Developer Force Multiplier

C++

Bjarne Stroustrup
 C with Objects (1979)

 Modeled OO after
Simula and Ada
○ But syntax and RTL

based on C
 Classes
 Inheritance
 Inlining
 Default arguments
 Type checking
 CFront compiler

A Brief History of C++

C++11 – A new Standard

Language
 Rvalue references and move constructors
 constexpr - Generalized constant

expressions
 Core language usability enhancements
 Initializer lists
 Uniform initialization
 Type inference
 Range-based for-loop
 Lambda functions and expressions
 Alternative function syntax
 Object construction improvement
 Explicit overrides and final
 Null pointer constant
 Strongly typed enumerations
 Right angle bracket
 Explicit conversion operators
 Alias templates
 Unrestricted unions

Library
 Variadic templates
 New string literals
 User-defined literals
 Multithreading memory model
 Thread-local storage
 Explicitly defaulted and deleted

special member functions
 Type long long int
 Static assertions
 Allow sizeof to work on members

of classes without an explicit object
 Control and query object alignment
 Allow garbage collected

implementations
 Threading facilities
 Tuple types
 Hash tables
 Regular expressions
 General-purpose smart pointers
 Extensible random number facility
 Wrapper reference
 Polymorphic wrappers for function

objects
 Type traits for metaprogramming

64-bit C++Builder for Windows

 C++11 support in BCC64 compiler
 VCL and FireMonkey
 Dinkumware STL for C++11/C99 version 5.30
 Boost version 1.50.0
 Highly-optimized code generation

VCL and FireMonkey

VCL
 32-bit and 64-bit

Windows applications
 Windows 8 Metropolis

UI
 Non-client area styling
 Sensor API

FireMonkey
 32-bit and 64-bit

Windows applications
 Windows 8 Metropolis

UI
 Mountain Lion and

Retina
 Mac OS X app store

compatible
 Sensor API and non-

client area styling

C++11
 Language

 auto
 ranged-for loop
 lambda expressions
 uniform initialization

syntax
 variadic templates
 rvalue references
 delegating constructor
 thread local storage
 in-class member

initialization
 And much more!

 Library
 random number

generators
 new auto and shared

pointers
 hash map
 atomic operations
 regular expressions
 async
 threads
 metaprogramming and

traits
 And much more!

Dinkumware Standard C++ Library

 Includes:
 Standard Template Library (STL)
 Standard C Library
 Standard C Library Headers

 Version 5.30 – C++ 64
 Version 5.01 – C++ 32
 http://www.dinkumware.com/

Boost Libraries
 Some new C++ features begin life in Boost
 As usage grows, adopted into C++ language or STL

 boost::bind -> lambda expression binding
 boost::for_each -> ranged for loop

 Two versions
 1.50.0 – 64-bit C++
 1.39 – 32-bit C++

BCC32 and BCC64
 size_t versus unsigned

 size_t is defined as an unsigned integral type
 In Win32 and Win64, this is the same size as a pointer
 In Win32's "ILP32" data model, int (and long) and

pointers are 32-bit. You could use unsigned int in place
of size_t, although it was not portable.

 Win64 is an "LLP64" data model: long long and pointers
are 64-bit, while int (and long) are still 32-bit. Therefore,
you must use size_t.

 _WIN32 Is Defined For Win64
 _WIN32 is defined (as the integer 1) for both Win32 and

Win64 targets. This allows programs to target (modern)
Windows in general, among other platforms.

 _WIN64 is defined only for Win64 targets

BCC32 & BCC64 – Windows Programming

 64-bit Windows Applications use the familiar Windows API
 Windows API calls must be 64-bit versions.
 Try blocks are supported in 64-bit Windows programs.
 A 64-bit Windows application can use a 32-bit Windows type

library (as some 64-bit MS Office applications do).
 Cannot mix 32-bit and 64-bit code in the same process.

 DLLs, components, libraries, and packages require that you
compile or install separate 32-bit Windows (design-time) and
64-bit Windows (run-time) versions if you want to use the
Form Designer.

 64-bit Windows is needed for OS extensions, shell extensions.
 The size of LRESULT, WPARAM, and LPARAM all expand to 64

bits, so message handlers will have to be checked for
inappropriate casts.

BCC64 - Compiler
 BCC64 is based on the Clang compiler front-end.

 Different set of compiler options
 BCC64 is more compliant with C++ language standards than BCC32.

 In addition to new, more specific and detailed warnings and error messages,
BCC64 phrases messages for conditions detected by BCC32 in a different way.

 To get all the predefined macros directly from the preprocessor, run: echo |
bcc64 -E -dM –

 Detecting BCC64: check for _WIN64. To detect BCC64 specifically, you can use:
 #if __BORLANDC__ && __clang__
 __BORLANDC__ is the compiler version (currently 0x0650 for version 6.50)
 __clang__ is 1 for BCC64.

 #include Paths and Lookup - BCC64 supports three different header/source
paths:
 -isystem is for system headers included with BCC64.
 -I is for headers provided by third parties.
 -iquote is for your own source files and headers, #include "file". If the named file is not

found, then the paths specified by -I and -isystem are searched, as if the directive was
#include <file>

BCC64 - Compiler
 Precompiled Headers work differently

 Each 64-bit Windows C++ project can have only one precompiled
header,

 A default precompiled header (named projectPCHn.h) is generated
for each new C++ project (for any platform)

 Object and Library File Format
 BCC32 and its associated tools use OMF in .obj and .lib files
 BCC64 uses ELF in .o and .a files
 When you migrate a 32-bit Windows application to 64-bit Windows,

you must change references to .lib and .obj to be .a and .o,
respectively.

 Unicode Identifiers - Although Unicode is supported in
literal strings and file names, Unicode in identifiers is not
allowed

BCC64 – Assembly Language Programming

 Inline Assembly
 BCC32-style inline assembly is not supported
 Functions written entirely in assembly (with a separate

assembler) may be linked into your program
 Clang does support inline assembly, but with line-by-line

AT&T syntax, not the more familiar block-of-Intel syntax.
 Most of the registers of a 64-bit Windows CPU are twice as

wide as those in a 32-bit Windows CPU. Yet the size of the
instruction register (IR) is the same for 32-bit Windows and
64-bit Windows processors.

Upgrading Existing BCC32 Projects
 Object and Library File Format

 BCC32 and its associated tools use OMF in .obj and .lib files.
 BCC64 uses ELF in .o and .a files.
 Where possible, object and library file extensions should be removed. When necessary, as in

custom scripts, the extension must be changed or made conditional with version detection.
 #pragma link

 If the files named in #pragma link statements contain a file extension, those extensions must be
removed. Each compiler will append the appropriate extension.

 For example, Control Panels apps that use this statement:
○ #pragma link "Ctlpanel.obj"
○ must be updated to read:
○ #pragma link "Ctlpanel“

 Applications that use the Windows API must explicitly contain: #include <windows.h>
 With BCC32, including windows.h is not required, but BCC64 requires windows.h and is more strict

about #includes.
 NO_STRICT Macro - The NO_STRICT type checking scheme is not supported in BCC64. If

you have existing projects that use it, it should be removed.
 Updating WebBroker Projects

 Change #pragma link as described above.
 Updating WebSnap Projects

 Change #pragma link as described above.
 Change _fastcall (single-underscore) to __fastcall (double-underscore).

64-bit C++Builder for Windows

 C++11 support in BCC64 compiler
 VCL and FireMonkey
 Dinkumware STL for C++11/C99 version 5.30
 Boost version 1.50.0
 Highly-optimized code generation

General Availability
 Download on December 10th

 Re-install for XE3 developers

 Binary compatible with XE3

	The Developer Force Multiplier
	スライド番号 2
	Bjarne Stroustrup
	スライド番号 4
	スライド番号 5
	A Brief History of C++
	C++11 – A new Standard
	64-bit C++Builder for Windows
	スライド番号 9
	VCL and FireMonkey
	C++11
	Dinkumware Standard C++ Library
	Boost Libraries
	BCC32 and BCC64
	BCC32 & BCC64 – Windows Programming
	BCC64 - Compiler
	BCC64 - Compiler
	BCC64 – Assembly Language Programming
	Upgrading Existing BCC32 Projects
	64-bit C++Builder for Windows
	General Availability	

