RAD Studio XE3 @

The Developer Force Multiplier

Mac OS X
Mountain Lion

N

Bjarne Stroustrup

® C with Objects (1979)

e Modeled OO after
Simula and Ada

But syntax and RTL
based on C

e Classes

e Inheritance

e Inlining

e Default arguments
e Type checking

e CFront compiler

st select the application
code you want to overlay, and VROOMM
s the rest

demand. It's

pmgranh
Turbo DPbug_,e
object-orie S PO
first and only debugger
uui'un Letti

\Turh thler lhe warld's first
m[r ctive prniﬂ:r displays histograms of
ormance. With it, you

FurhuL Pruu».mnal
And Turbo C++ Profe
h.m\ed nati

ou can be pro-

a mmmpllu ANSIC code
ductive with C now, and move to C++ at
your own pace.

Environment ++

t compiler des the best e
and our new Pm ammer’

productive. It features overlapping win-
d d support. And spor
multi- i integrate

and a smart project m;

open archite urrll 5
, And Turbo A: tmbttr

replace tim
! . using the world's fastest MASM-compatible
VROOMM™ (Virtual Runtime Objec assembler.
Oriented Memory Manager) lets you break

BORLAND

New Turbo C++ Professional

Turbn C++ Professional Compiler
C++ conforming to AT&T's 2.0
cation
++ class libraries
SI C compiler
1 overlay manager
documentation and tutorials

= Overlapping windows with mouse
support
ultifile, macro-based
manager provides visual

= [ntegrated debugging and hyp
Turbo Debugger 2.0

y browse rdnd ins|
rue” undo
= 286 protected-mc m virtual-mode
bugging
troke record and playback
NEW Turbo Profiler
= Displays histograms of program
ecution
= Tracks call history, overlays, interrupts,
0
Turbo Assembler 2.0
= Multipass assembler with NOP squish
ing and 486 support

Special Introductory Oﬂer
The suggested ret at[p e for Turbo C

Profes

Turbo

is offering its
ualmlrodu ory

a hm:lrd time, Borland
s and distributors spe-
unts.* So be obje
R DEALER or call
Bur]and*’ at 1-800-331-0877 now!

A Brief History of C++ @

C++
Created C++03 C++11

C++11 — A new Standard

(OJNO;

(ONOCORONMOMONMONOMONMONOMONMONOMO]

Language
Rvalue references and move constructors

constexpr - Generalized constant
expressions

Core language usability enhancements
Initializer lists

Uniform initialization

Type inference

Range-based for-loop

Lambda functions and expressions
Alternative function syntax

Object construction improvement
Explicit overrides and final

Null pointer constant

Strongly typed enumerations
Right angle bracket

Explicit conversion operators

Alias templates

Unrestricted unions

ector<int>> =default, =delete atomic<T> auto f{) -> int

d array<T,M>
“ thread_local array<T,N>

decltype
c + + noexcept

regex
extern template

: async
nullptr .) delegating constructors
auto i = v.begin();

template
aliases

lambdas

[l{ foo(); } everride, variadic templates (move semantics)
’

final template<typename T...>

thread, mutex function<> fyture<T>

for{x:coll) strongly-typed enums tuple<int float,string>
enumclassE{ .. };

unordered_maps<int, string>

rvalue references

static_assert (x)

(OIONOMOMONNO,

© ®®

(OJNO;

(ONONOMOMOOMONO)

®

Library
Variadic templates
New string literals
User-defined literals
Multithreading memory model
Thread-local storage

Explicitly defaulted and deleted
special member functions

Type long long int
Static assertions

Allow sizeof to work on members
of classes without an explicit object

Control and query object alignment

Allow garbage collected
implementations

Threading facilities

Tuple types

Hash tables

Regular expressions
General-purpose smart pointers
Extensible random number facility
Wrapper reference

Polymorphic wrappers for function
objects

Type traits for metaprogramming

64-bit C++Builder for Windows @

® C++11 support in BCC64 compiler

@ VCL and FireMonkey

® Dinkumware STL for C++11/C99 version 5.30
® Boost version 1.50.0

® Highly-optimized code generation

& An Architecture for the Future

PME & RTTI |CODE GEN | [NTEL

Engine
ARM
IR ENGINE
Language
Engine
99, C++98, C++11 BorlandC++ STL, Boost, Loki, ACE

C++Builder, CLANG

VCL and FireMonkey

®©@ @

VCL

32-bit and 64-bit
Windows applications

Windows 8 Metropolis
UI

Non-client area styling
Sensor API

FireMonkey
32-bit and 64-bit
Windows applications

Windows 8 Metropolis
UI

Mountain Lion and
Retina

Mac OS X app store
compatible

Sensor API and non-
client area styling

©

C++11

®

Language

auto
ranged-for loop
lambda expressions

uniform initialization
Syntax

variadic templates
rvalue references
delegating constructor
thread local storage
in-class member
initialization

And much more!

Library

random number
generators

new auto and shared
pointers

hash map

atomic operations
regular expressions
async

threads

metaprogramming and
traits

And much more!

Dinkumware Standard C++ Library @

® Includes:
e Standard Template Library (STL)
e Standard C Library
e Standard C Library Headers

® Version 5.30 = C++ 64
® Version 5.01 — C++ 32
® http://www.dinkumware.com/

Boost Libraries @

® Some new C++ features begin life in Boost

® As usage grows, adopted into C++ language or STL
e pboost:bind -> lambda expression binding
e boost:for_each -> ranged for loop

® [wo versions

e 1.50.0-064-bit C++
e 139-32-bit C++

BCC32 and BCCH4 @

® size_t versus unsigned
e size_tis defined as an unsigned integral type

e In Win32 and Win64, this is the same size as a pointer

e In Win32's "ILP32" data model, int (and long) and
pointers are 32-bit. You could use unsigned int in place
of size_t, although it was not portable.

e Win64 is an "LLP64" data model: lon Ion%and pointers
are 64-bit, while int (and long) are still 32-bit. Therefore,
you must use size_t.

® WIN32 Is Defined For Win64

e _WIN32 is defined (as the integer 1) for both Win32 and
Win64 targets. This allows programs to target (modern)
Windows in general, among other platforms.

e _WING64 is defined only for Win64 targets

BCC32 & BCCH4 — Windows Programming @

64-bit Windows Applications use the familiar Windows API
Windows API calls must be 64-bit versions.
Try blocks are supported in 64-bit Windows programs.

A 64-bit Windows application can use a 32-bit Windows type
library (as some 64-bit MS Office applications do).

e Cannot mix 32-bit and 64-bit code in the same process.
DLLs, components, libraries, and packages require that you
compile or install separate 32-bit Windows (design-time) and

64-bit Windows (run-time) versions if you want to use the
Form Designer.

® 04-bit Windows is needed for OS extensions, shell extensions.

® The size of LRESULT, WPARAM, and LPARAM all expand to 64
bits, so message handlers will have to be checked for
iInappropriate casts.

©@ ©®©® ©O

®

BCCo64 - Compiler

O]

BCC64 is based on the Clang compiler front-end.

e Different set of compiler options

e BCC64 is more compliant with C++ language standards than BCC32.

In addition to new, more specific and detailed warnings and error messages,
BCC64 phrases messages for conditions detected by BCC32 in a different way.

To get all the predefined macros directly from the preprocessor, run: echo |
bcco4 -E -dM -

Detecting BCC64: check for _WIN64. To detect BCC64 specifically, you can use:
e #if _BORLANDC__ && __clang__

e _ BORLANDC__is the compiler version (currently 0x0650 for version 6.50)

e _clang__is 1 for BCCoA4.

#include Paths and Lookup - BCC64 supports three different header/source
paths:

e -isystem is for system headers included with BCC64.
e -lis for headers provided by third parties.

e -iquote is for your own source files and headers, #include "file". If the named file is not

found, then the paths specified by -I and -isystem are searched, as if the directive was
#include <file>

BCC64 - Compiler ()

® Precompiled Headers work differently

e Each 64-bit Windows C++ project can have only one precompiled
header,

e A default precompiled header (named projectPCHn.h) is generated
for each new C++ project (for any platform)
® Object and Library File Format
e BCC32 and its associated tools use OMF in .obj and .lib files
e BCC64 uses ELF in .0 and .a files
e When you migrate a 32-bit Windows application to 64-bit Windows,
you must change references to .lib and .obj to be .a and .o,
respectively.
® Unicode Identifiers - Although Unicode is supported in
literal strings and file names, Unicode in identifiers is not

allowed

BCC64 — Assembly Language Programming @

® Inline Assembly
e BCC32-style inline assembly is not supported
e Functions written entirely in assembly (with a separate
assembler) may be linked into your program

e (Clang does support inline assembly, but with line-by-line
AT&T syntax, not the more familiar block-of-Intel syntax.

® Most of the registers of a 64-bit Windows CPU are twice as
wide as those in a 32-bit Windows CPU. Yet the size of the
instruction register (IR) is the same for 32-bit Windows and

64-bit Windows processors.

Upgrading Existing BCC32 Projects

® Object and Library File Format
e BCC32 and its associated tools use OMF in .obj and .lib files.
e BCC64 uses ELF in .0 and .a files.

e Where possible, object and library file extensions should be removed. When necessary, as in
custom scripts, the extension must be changed or made conditional with version detection.,

® #pragma link
e If the files named in #pragma link statements contain a file extension, those extensions must be
removed. Each compiler will append the appropriate extension.

e For example, Control Panels apps that use this statement:
#pragma link "Ctlpanel.obj"
must be updated to read:
#pragma link "Ctlpanel”

® Applications that use the Windows API must explicitly contain: #include <windows.h>

e With BCC32, including windows.h is not required, but BCC64 requires windows.h and is more strict
about #includes.

® NO_STRICT Macro - The NO_STRICT type checking scheme is not supported in BCC64. If
you have existing projects that use it, it should be removed.
® Updating WebBroker Projects
e (Change #pragma link as described above.
® Updating WebSnap Projects
e (Change #pragma link as described above.
e Change _fastcall (single-underscore) to __fastcall (double-underscore).

64-bit C++Builder for Windows @

® C++11 support in BCC64 compiler

@ VCL and FireMonkey

® Dinkumware STL for C++11/C99 version 5.30
® Boost version 1.50.0

® Highly-optimized code generation

General Availability @

® Download on December 10t
@ Re-install for XE3 developers

® Binary compatible with XE3

	The Developer Force Multiplier
	スライド番号 2
	Bjarne Stroustrup
	スライド番号 4
	スライド番号 5
	A Brief History of C++
	C++11 – A new Standard
	64-bit C++Builder for Windows
	スライド番号 9
	VCL and FireMonkey
	C++11
	Dinkumware Standard C++ Library
	Boost Libraries
	BCC32 and BCC64
	BCC32 & BCC64 – Windows Programming
	BCC64 - Compiler
	BCC64 - Compiler
	BCC64 – Assembly Language Programming
	Upgrading Existing BCC32 Projects
	64-bit C++Builder for Windows
	General Availability	

