
EMBARCADERO TECHNOLOGIESEMBARCADERO TECHNOLOGIES

C++11 and Compiler Update

John “JT” Thomas
Sr. Director Application Developer
Products

EMBARCADERO TECHNOLOGIES

About this Session

• A Brief History

• Features of C++11 you should be using now

• Questions

2

EMBARCADERO TECHNOLOGIES

Bjarne Stroustrup
• C with Objects (1979)

– Modeled OO after Simula and
Ada
• But syntax and RTL based on C

– Classes
– Inheritance
– Inlining
– Default arguments
– Type checking
– CFront compiler

EMBARCADERO TECHNOLOGIES

A Brief History of C++

EMBARCADERO TECHNOLOGIES

EMBARCADERO TECHNOLOGIES

EMBARCADERO TECHNOLOGIES

C++11 – A new Standard
Language

• Rvalue references and move constructors
• constexpr - Generalized constant expressions
• Core language usability enhancements
• Initializer lists
• Uniform initialization
• Type inference
• Range-based for-loop
• Lambda functions and expressions
• Alternative function syntax
• Object construction improvement
• Explicit overrides and final
• Null pointer constant
• Strongly typed enumerations
• Right angle bracket
• Explicit conversion operators
• Alias templates
• Unrestricted unions

Library
• Variadic templates
• New string literals
• User-defined literals
• Multithreading memory model
• Thread-local storage
• Explicitly defaulted and deleted special member

functions
• Type long long int
• Static assertions
• Allow sizeof to work on members of classes

without an explicit object
• Control and query object alignment
• Allow garbage collected implementations
• Threading facilities
• Tuple types
• Hash tables
• Regular expressions
• General-purpose smart pointers
• Extensible random number facility
• Wrapper reference
• Polymorphic wrappers for function objects
• Type traits for metaprogramming

EMBARCADERO TECHNOLOGIES

EMBARCADERO TECHNOLOGIES

auto keyword

• Type inference
• auto asks the compiler

to deduce the type
• Helps with readability

of code especially with
template container
iterators

• auto i = 9; //int
• auto f = 3.14f; //float
• auto f = new foo(); //foo*

9

EMBARCADERO TECHNOLOGIES

ranged for loop

• a for_each concept to loop
through standard containers

• Any type with a begin() and end()
• for (auto i : map)

– access I by value
• Use auto& I for ref to modify
• Use auto const & I for ref to ready

only

10

EMBARCADERO TECHNOLOGIES

Smart pointers

• C++ version of ARC
• auto_ptr is deprecated
• 3 new smart pointers in

C++11
– unique_ptr, shared_ptr, and

weak_ptr

• unique_ptr
– Ownership of memory does not have to be

shared
– Can be transferred to another unique_ptr with

a move constructor

• shared_ptr
– Ownership of memory is shared (reference

counted)

• weak_ptr
– Reference to an object managed by shared_ptr

but does not contribute to the ref count
– Used to avoid reference cycle

11

EMBARCADERO TECHNOLOGIES

Move semantics

• Modify rvalue
references

• Specified by &&
• Implemented as a move

constructor and move
assignment operator

12

EMBARCADERO TECHNOLOGIES

Uniform initialization syntax

• C++ have a long history
with sporadic
compatibility with C
– Thus, there are several

ways to initiate a
variable

• STL containers required
dynamic initilization
– i.e. push_back13

EMBARCADERO TECHNOLOGIES

Override and final

• Deaks with typical
inheritance issues/mistakes
– Differing signatures

accidently resulting in a non
override

• Override indicates a
method is supposed to
overried a virtual method in
its base

• final indicates a method
can no longer be
overridden

14

EMBARCADERO TECHNOLOGIES

nullptr

• Zero (integer) used to
be value of null pointers
– Could result in implicit

type conversion

• nullptr is of type
std::nullptr_t that
represents a null
pointer literal

• Implicit conversion from
– nullptr to null pointer

value of any pointer type

15

EMBARCADERO TECHNOLOGIES

lambda expressions

• New syntax for defining
anonymous functions

• Can be used to define
closures to capture
variables

• [capture-list] (params)
{body;}

• [capture-list] (params)
->ret {body;}

• [capture-list] (params)
mutable exception
attributed -> ret {body;}

16

EMBARCADERO TECHNOLOGIESEMBARCADERO TECHNOLOGIES

C++ Compiler Update

17

EMBARCADERO TECHNOLOGIES

Active projects

• Move to CLANG 3.3
– Full C++ compliance
– futures/async

• Support C++11 on all platforms
– Win32 CLANG based toolchain

• Current version owners will be invited to participate
in a beta when it is released

18

EMBARCADERO TECHNOLOGIESEMBARCADERO TECHNOLOGIES

Questions?

19

