EMBARCADERO TECHNOLOGIES

C++11 and Compiler Update

John “JT” Thomas

Sr. Director Application Developer
Products

EMBARCADERO TECHNOLOGIES

About this Session

* A Brief History

* Features of C++11 you should be using now

e Questions

? (Ombarcadero

EMBARCADERO TECHNOLOGIES

Bjarne Stroustrup

 C with Objects (1979)

— Modeled OO after Simula and
Ada

e But syntax and RTL based on C
— Classes
— Inheritance
— Inlining
— Default arguments
— Type checking
— CFront compiler

(Ombarcadero

EMBARCADERO TECHNOLOGIES

A Brief History of C++
C++
Created C++03 C++11
® o o o
C++98 TRO1

(Gmbarcadero

New Turbo C++ Professional

When the object
IS programming

Objective
Object-Oriented
Programming
(OOP) is programming in the '90s. It's the
next step after structured programming
and is the best way to write applications.
So Borland combined the power of OOP
with the efficiency of C to produce new
Turbo C++ Professional.

And Turbo C++ Professional is the first
‘Turbo-charged native code C++ compiler
that brings Object-Oriented Programming
to your PC. Since Turbo C++ Professional
also compiles ANSI C code, you can be pro-
ductive with C now, and move to C++ at
your own pace.

Environment ++
The best compiler deserves the best envi-
ronment, and our new Programmer’s
Platform™ environment makes you more
productive. It features overlapping win-
dows and mouse support. And sports a new
multi-file editor, an integrated debugger,
and a smart project manager. Its advanced
open architecture lets you integrate the
tools you need to feel right at home.

VROOMM adds room
VROOMM™ (Virtual Runtime Object-
Oriented Memory Manager) lets you break

the 640K barrier. Just select the application
code you want to overlay, and VROOMM
does the rest—swapping modules on
demand. It's fast, easy, automatic.

Another +
Turbo C++ Professional gives you all the
tools you need to build fast, reliable C++
programs.

Turbo Debugger® 2.0 debugs your
ob)ecmnented programs. This powerful
new version is the first and only debugger
to support reverse execution. Letting you
step backwards through your code to find
the bugs you might have missed.

New Turbo Profiler,” the world’s first
interactive profiler, displays histograms of
your program’s performance. With it, you

TURBQO C++

PROFESSIONAL

40 LAY CARCY GRS HOCIAM

can easily spot execution bottlenecks, and
see where improvements or redesign of
your code will yield maximum performance

gains,

And Turbo Assembler® 2.0 lets you
replace time-critical segments of your code
using the world'’s fastest MASM-compatible
assembler.

B ORLAND

Turbo C++ Professional Compiler

= C++ conforming to AT&T’s 2.0
specification

= C++ class libraries

= Full ANSI C compiler

= VROOMM overlay manager

= Complete documentation and tutorials

Programmer’s Platform

= Open architecture for integration of
your own tools

= Overlapping windows with mouse
support

= Multifile, macro-based editor

= Smart project manager provides visual
MAKE

= [ntegrated debugging and hypertext help
Turbo Debugger 2.0
= (Class hierarchy browser and inspectors
= Reverse execution provides “true” undo
= 286 protected-mode and 386 virtual-mode
debugging
= Keystroke record and playback
NEW Turbo Profiler
= Displays histograms of program
execution
= Tracks call history, overlays, interrupts,
file /O
Turbo Assembler 2.0

= Multipass assembler with NOP squish-
ing and 486 support

Special Introductory Offer
The suggested retail price for Turbo C++
Professional is $299.% ($199.% for

Turbo C++). For a limited time, Borland

is offering its dealers and distributors spe-
cial introductory discounts.* So be objec-
tive, and SEE YOUR DEALER or call
Borland** at 1-800-331-0877 now!

> Ons xpees sy 31,1990 sl s bt Ot g e St st Carada e “Sgnca ot o gt oo 4 crers o et v S s s . B 0. B GGOO, Scms ey CA 95067001
Code: MCB6 For e e T U5 a8 1408 430-A00 o €3+ Tt Deer o ks o b ASseriies o TAOTAS epassed 1 30eRsS 1 Borind Tammchora 1. Coyig & 1990, Brnd Inerabes: o Al s tesved B 1533

EMBARCADERO TECHNOLOGIES

(Gmbarcadero

E» Path to C++

C+ +Builder

Turbo C+ +

[Ce+ Builder XE3

c-l-l-

e

C+ +Builder XE3

EMBARCADERO TECHNOLOGIES

L

C+ +Builder

C++11 - A new Standard

Language
. Rvalue references and move constructors
. constexpr - Generalized constant expressions
. Core language usability enhancements
. Initializer lists
. Uniform initialization
. Type inference
. Range-based for-loop
. Lambda functions and expressions
. Alternative function syntax
. Object construction improvement
. Explicit overrides and final
. Null pointer constant
. Strongly typed enumerations
. Right angle bracket
. Explicit conversion operators
. Alias templates
. Unrestricted unions

vector<vector<int>> =default, =delete atomic<T> auto f() = Int

user-defined
literals thread_local
vector<LocalType>

initializer lists regex

unique_ptr<T>, thread, mutex
shared_ptr<T=,
weak_ptr<T> for(x : coll)

[]{ fOO()' } override, variadic templates
B

final template<typename T...>

array<T,N>

C++ 1 7 noexcept et

extern template

TR eI e snordersd_mapsntating>
aliases nullptr . N delegating constructors
auto i = v.begin();
lambdas rvalue references

(move semantics)

static_assert {x)
function<> future<T>

strongly-typed enums tuple<int,float,string>
enum class E{ ... };

EMBARCADERO TECHNOLOGIES

Library

Variadic templates

New string literals
User-defined literals
Multithreading memory model
Thread-local storage

Explicitly defaulted and deleted special member
functions

Type long long int
Static assertions

Allow sizeof to work on members of classes
without an explicit object

Control and query object alignment

Allow garbage collected implementations
Threading facilities

Tuple types

Hash tables

Regular expressions

General-purpose smart pointers
Extensible random number facility
Wrapper reference

Polymorphic wrappers for function objects

Type traits for metaprogrammn@nbarcadew

EMBARCADERO TECHNOLOGIES

&» An Architecture for the Future

PME & RTTI |CODE GEN INTEL
Engine
ARM

IR ENGINE
Language

Engine

(99, C++98 C++11 BorlandC++ STL, Boost, Loki, ACE
C++Builder, CLANG

EMBARCADERO TECHNOLOGIES

auto keyword

* Type inference e autoi=9;//int
* auto asks the compiler e auto f = 3.14f; //float
to deduce the type . auto f = new foo(); //foo*

* Helps with readability
of code especially with
template Container void _ fastcall TFormS5::ButtonlClick(TCbject *Sender)

° std: :map<{std::string, std::vector<int>> map:;
Iterators for(anto 1 = map.begin(): 1 '= map.end(): 1i++):

ranged for loop

 afor_each concept to loop
through standard containers

* Any type with a begin() and end() —
e for (autoi: map) | st e s s bin0s 5 1o mapanats 200
— access | by value

. void fastcall TFormS::ButtonlClick(TObject *Sender)
e U to& I f ft dif
Se au O Or re O mo I y std: :map<std: :string, std::vector<int>> map’;
for(anto i = map.begin(): i != map.end(): i++):

e Use auto const & | for ref to ready
only

10 (Ombarcadero

Smart pointers

* C++ version of ARC ® unique_ptr
. — Ownership of memory does not have to be
 auto ptris deprecated shared
. . — Can be transferred to another unique_ptr with
* 3 new smart POl nters In a move constructor
C++11 * shared_ptr
. — Ownership of memory is shared (reference
— unlqlije_ptr, shared_ptr, and counted)
Wwea tr
P e weak ptr
g —— — Reference to an object managed by shared_ptr
(Brromee s e ey s s | but does not contribute to the ref count
Yoid _fastosll TFomS: BuctoniClick (Tobject. *Sender) — Used to avoid reference Cyc'e

void _ fastca TForm5::Button c OCbject *Sender)
11 ¢ y
std::shared ptr <int> pl(new int(9)); ero
std::weak ptr <int> p2 = pl; no ref count

Move semantics

* Modify rvalue
references Jo—

* Specified by && B i

21ze;

* Implemented as a move G L esmvwmsgmnay, s s
constructor and move e e
assignment operator ™ ek)

12 (Gmbarcadero

Uniform initialization syntax

* C++ have a long history
with sporadic
compatibility with C

— Thus, there are several oo

ways to initiate a e T
variable
e STL containers required
dynamic initilization
B — j.e. push_back Cmbarcadero

Override and final

* Deaks with typical final indicates a method
inheritance issues/mistakes can no longer be
) aDcn::finelrr:flfllfensaL}Iutirr?; ina non overridden
override B
* Override indicates a o
method is supposed to e naa
overried a virtual method in SR
its base "

" (GOmbarcadero

EMBARCADERO TECHNOLOGIES

nullptr

e Zero (integer) used to * Implicit conversion from
be value of null pointers — nullptr to null pointer
— Could result in implicit value of any pointer type

type conversion

* nullptris of type
std::nullptr_t that
represents a null

pointer literal
15 (Ombarcadero

EMBARCADERO TECHNOLOGIES

lambda expressions

* New syntax for defining ¢ [capture-list] (params)

anonymous functions {body;}
* Can be used to define e [capture-list] (params)
closures to capture ->ret {body;}
variables * [capture-list] (params)
“eeeeoeee 0 mutable exception

attributed -> ret {body;}

(Gmbarcadero

EMBARCADERO TECHNOLOGIES

C++ Compiler Update

Active projects

* Move to CLANG 3.3

— Full C++ compliance
— futures/async

e Support C++11 on all platforms
— Win32 CLANG based toolchain

* Current version owners will be invited to participate
in a beta when it is released

18 (Ombarcadero

EMBARCADERO TECHNOLOGIES

Questions?

