

Americas Headquarters

EMEA Headquarters

Asia-Pacific Headquarters

100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

INTEGRATING FIREMONKEY INTO YOUR
EXISTING VCL, C# AND C++ APPLICATIONS

Developing and using Win/Mac Libraries

Stephen Ball, Technical Sales Consultant

Embarcadero Technologies

April 2012

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 1 -

Table of Contents
Introduction - - 2 - -
What is a Shared Library? - - 2 - -

Part 1 – Our First Multi-Platform Shared Library - - 3 - -
Creating a shared library with Delphi - - 3 - -
Using the shared library from an application - - 7 - - Getting up and running on the Mac - - 11 - -

Part 2 – Consuming FireMonkey via a Shared Library. - - 16 - -
Creating a FireMonkey Library - - 16 - - Consuming the “FireMonkey” library (Lazy loading) - - 23 - - Writing a VCL client for a FireMonkey Library - - 26 - - Writing a FireMonkey Client to use a Library that uses FireMonkey - - 28 - -

Part 3 – Integrating with C++ - - 31 - -
Part 4 - Integrating with C# - - 33 - -
Summary - - 38 - -
Useful Links - - 38 - -

Source - - 38 - -
Videos - - 38 - -
Embarcadero URL’s - - 38 - -

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 2 -

INTRODUCTION

In this paper we will look at what is required to create a shared library with RAD
Studio that can be used across multiple platforms, specifically with Windows and
Mac OS X. We will look at using the new library in Delphi FireMonkey™ & VCL
applications and also with C#.

We will cover using the shared library for containing business logic that is shared
across applications using examples. The first will be a simple library with no visual
elements. The second will use FireMonkey forms within the library and illustrate the
differences this causes due to GDI+. Finally we also look at what is required to call
the second example from a C# application.

The techniques used in this paper are relevant and applicable for developers using
C++Builder to write visual (using FireMonkey) and non-visual code.

WHAT IS A SHARED LIBRARY?

Before we start lets explore what a Library is:

Some really good reading is available from Wikipedia on the subject.
http://en.wikipedia.org/wiki/Shared_library#Shared_libraries

In short; a shared library is a file that is designed to be used by multiple executable
files. Shared Libraries typically contain methods (functions and procedures) that are
exposed so they can be called by different applications.

Shared libraries are typically loaded/bound for use by applications either
immediately at run time (as the application is loading) or late (just at the point they
are required). By loading as the application starts it will typically be faster to use the
library, as when you need it, it is already loaded. Late loading however will make it
possible to deploy applications with only the required libraries and handle what
happens when a library is missing at run time.

Dynamic-link library (DLL) is Microsoft’s implementation of the shared library
concept. On windows shared libraries typically have .dll as an extension.
Dylib is the Mac OS X equivalent and has the naming convention of libxxx.dylib (xxx
being the descriptive part of the file name)

There are also some other great articles on edn.embarcadero.com looking at using
DLL’s – For Interoperability with PHP, which is outside the scope of this paper, see:
http://edn.embarcadero.com/article/39531 .

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 3 -

PART 1 – OUR FIRST MULTI-PLATFORM SHARED

LIBRARY
CREATING A SHARED LIBRARY WITH DELPHI
If you are moving to RAD Studio XE2 from an earlier version then this next section
should feel very familiar. We will start by looking at creating a shared library with
some non-visual code. The language used here is Delphi.

From the File > New > Other…. menu option

Select Dynamic Link Library

You will then be presented with a new library

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 4 -

We can now use this base template to create the methods we want to expose and
make available to multiple applications.

For the purpose of this document we will start by creating a quote generator that will
work on Windows and Mac OS X.

Before we go any further, save the project as “MyXPlatformLib”.
To save the project choose File > Save Project As… (see tip below)

TIP: It is recommended practice that you make a folder for each project you create
and save the project into it otherwise it will be saved into
C:\Users\UserName.EMBARCADERO\Documents\RAD Studio\Projects along with
everything else ever saved.

For the purpose of demonstrating, we will have our quote generator return a
ShortString made up of the date time and the classic first application quote of “Hello
World!!” appended.

Using a ShortString will limit the library for easy use with other Delphi and
C++Builder applications, but will make it easy for the initial demo without the need
to manage memory passed between the application and the library. (This will be
covered later in the paper) This is also covered in the commented notes (in green) in
the code when a new library is created, as you can see above in the IDE screen shot.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 5 -

uses
 System.SysUtils,
 System.Classes;

 function GetQuoteOfTheDay: ShortString; stdcall; export;
 begin
 Result := FormatDateTime('DD-MMM-YYYY HH:NN:SS ',Now)+'Hello World!!';
 end;

{$R *.res}
 exports
 GetQuoteOfTheDay;

begin
end.

With the function written (see above), it is worth noting there are two key steps to
making it available. Firstly declaring the calling convention for connecting to it. To
start we will use stdcall. This is done by adding stdcall; export; at the end of the
function. Alternatives to stdcall will come later in the paper)

Finally we have to add the exports list to declare the function as exported. If you
need to provide a different name for the exported call you can do that using the
exports section. This may be useful if you are exporting two overloaded methods as
you will need a unique name to identify each one.

e.g.
 exports
 GetQuoteOfTheDay name 'GetQuote';

Now that we have the code completed for our
library, it is time to compile our native versions for
our target platforms.

RAD Studio XE2 introduced the ability to compile
libraries for multiple Target Platforms.

Target platforms are found for each project in the
Project Manager.

Win32 bit is the default platform, however
you can add additional platforms by right
clicking and selecting Add Platform.

Add to the target platforms (using the drop
down list shown) OS X and Win 64.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 6 -

Your Project Group should now look
something like this

Now that you have your target platforms,
you can double click on the target
platform that you want to build for, and
choose Build or Compile from the Project
menu option. Short cut keys are also
available.

To Compile press Ctrl+F9.
To Build choose Shift +F9

Compiling the DLL may yield the following warning about potential data loss.
This is due to the result of the FormatDateTime function being a String rather than a
ShortString: For more on the warning see this URL.
http://docwiki.embarcadero.com/RADStudio/en/W1058_Implicit_string_cast_with_p
otential_data_loss_from_%27%25s%27_to_%27%25s%27_(Delphi)

This warning can be removed in this instance by typecasting the result as a
ShortString e.g.

 function GetQuoteOfTheDay: ShortString; stdcall; export;
 begin
 Result := ShortString(FormatDateTime('DD-MMM-YYYY HH:NN:SS ',Now)+'Hello
World!!');
 end;

Once built, go to the project folder using explorer and you will see that there are 3
separate folders created. OSX32, Win32 and Win64

This folder structure denotes the different platforms that you have built for and the
files required for each platform are created and placed into these output folders.
Each folder internally has either a Debug and/or Release folder depending on the
type of Build configuration used.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 7 -

Inspecting the content of the folders you will notice that the files that are output
have slightly different names between Windows and Mac. (dll vs. dylib extensions).

USING THE SHARED LIBRARY FROM AN APPLICATION

Now that we have our shared library built, we need to write an application to use it.

Using either Delphi or C++Builder we have two main visual choices. RAD Studio XE2
introduces a new multi-platform framework called FireMonkey, alternatively we have
VCL for Windows only. As we want to write and use this library on Windows and Mac
OS X we will use a FireMonkey project.

FireMonkey projects allow you to run visual applications across multiple platforms.
FireMonkey is written from the ground up to be Platform Independent. FireMonkey
draws all the controls itself rather than requiring the platform OS to produce the
controls. This has a number of great benefits including fully customizable style
support, the ability to build your own controls, but most importantly a common
interface that works on each of the platforms that FireMonkey targets (with the ability
for it to move applications to new and emerging platforms quickly as they become
available). This is especially important with the growing requirements for
organisations to support multiple devices per person.

To create a new FireMonkey project, we are going to
right click on the project group and choose Add New
Project and then Choose FireMonkey HD Application
under Delphi Projects.

With the new FireMonkey HD Application project
selected save the new project as
CallingXPlatformLibrary into the same folder as your
library project. This will ensure that when we build for
the different platforms the output goes to the same
folders and the library binaries will automatically be on
the search path. ☺

In your new project you will have a unit1/form1. To test
our library, we need to declare and then call the
GetQuoteOfTheDay function form the library.

Let’s start by setting up an event to call the library; add to the form a TLabel and a
TButton. You can also update the Text property of the button to “Get Quote”.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 8 -

For those who know the VCL (Visual Component Library) well, you will notice that the
text on the button is now a Text property, rather than Caption. – Personally I think
this is a great thing as it enables me to work with RTTI in a much more generic way
when working with controls having the Text property standardized.

We can now double click on the button to create an empty event from where we can
call GetQuoteOfTheDay; first, we need to declare the external method.

Because Windows and Mac OSX conventions produce different library file names, we
need to register the function in a way that will work for both platforms.

If we wish to register multiple functions then it would make sense to have a constant
that we use to define the library name and then the list of functions like below.

This type of function definition is called Implicit importing. The major draw back of
implicit definitions is that it requires the library to be present when the application
starts, otherwise the application cannot load.

From RAD Studio 2010 onwards, the keyword delayed was added to allow
applications to start without the library as they will only be loaded when required.
This converts the method definition to behave like an Explicitly defined declaration.
Unfortunately, the delayed keyword is not compatible with Mac versions.

If you wish to delay load the library on Windows you can add in an $IFDEF using the
platform specific definition for MSWINDOWS to ensure it compiles for Windows and
Mac.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 9 -

Now we have the function defined to use. Double click on the button to return to the
OnClick event. Add to the event the following code to set the Label1.Text property
to be the returned value of the call to the external function.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Text := GetQuoteOfTheDay;
end;

Your code should now look something like the following….
unit Unit1;

interface

uses
 System.SysUtils, System.Types, System.UITypes, System.Classes, System.Variants,
 FMX.Types, FMX.Controls, FMX.Forms;

type
 TForm1 = class(TForm)
 Button1: TButton;
 Label1: TLabel;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

const
 {$IFDEF MSWINDOWS}
 libraryname = 'MyXPlatformLib.dll';
 {$ENDIF}
 {$IFDEF MACOS}
 libraryname = 'libMyXPlatformLib.dylib';
 {$ENDIF}
 function GetQuoteOfTheDay: ShortString; stdcall external libraryname {$IFDEF
MSWINDOWS} delayed {$ENDIF};

var
 Form1: TForm1;

implementation

{$R *.fmx}
procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Text := GetQuoteOfTheDay;
end;

end.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 10 -

Now we have completed our client application, it is time to run on Windows to check
the code is working, before we deploy to Mac.

Select each project in turn (you can see if a project is selected as the project name is
bold).

Select the target platform for Win32 and compile the project.

Once both are compiled, select the
FireMonkey project (we saved earlier as
CallingXPlatformLibrary.exe) and Run. (F9)

As you click on the button now you will see the
quote returned from the library showing on the
label.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 11 -

GETTING UP AND RUNNING ON THE MAC
Now we have the Windows version running its time to look at running this
application on the Mac. This is a relatively simple process, but the first time we do
this we need to setup and configure Platform Assist Server (PAServer).

PAServer is a multi-platform application that runs on Windows or on Mac to allow us
to remotely deploy and debug applications.

PAServer client can be installed on multiple machines with profiles added as Target
Platforms into Delphi to enable you to connect and deploy quickly and easily.
PAServer also has the ability for you to debug from your IDE with the application
running on the remote machine (exceptionally helpful).

For now, we are going to deploy out our application to the Mac. First step is to
ensure PAServer is running on the Mac.

The installer for PAServer can be found after you install in
C:\Program Files (x86)\Embarcadero\RAD Studio\9.0\PAServer
For deploying to a remote windows
machine install using
Setup_paserver.exe
For deploying to a remote Mac
machine, then copy the contents of
the setup_paserver.zip file to the
Mac.

Once installed we need to launch
PAServer. The quickest way to do
this is run the search feature in the
top right corner of the Mac screen

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 12 -

As the PAServer starts you will be asked for a password.

Enter a session password that you want to use for connection to this machine. NOTE:
This does not have to be the same as the machine password. This is for connecting
to PAServer only.

Having entered the password your PAServer should now be up and running.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 13 -

If for any reason you need to close the PAServer type in the letter Q to quit and press
enter. This will shut down the PAServer socket connection allowing you to close it
safely.
The next step to deploying onto the PAServer on the Mac is to ensure we know the
Name / IP Address of the machine.

You can get this from the System Preferences > Network screen.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 14 -

With the IP Address we can then tell the
profile for the Mac where to point.

To do this, we need to edit the Target
Platform to contain this information.

Right Click on your Mac Target platform
and choose Edit Profile.

Edit the Host Name to contain the IP Address (or the machine name) and update the
Password to match the password entered in PAServer and choose “Test
Connection”

You should now see a connection-succeeded message.

We are almost ready to run our application and see it working on the Mac!

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 15 -

Finally we need to make sure that when we deploy our application, that the library
we have written (that is required by the application) is deployed as well.

Keeping with the Application selected in the Project group, go to Project,
Deployment.

From here we can add in the library as a file that we want deployed with the
PAServer.

Click on the Add File icon

Browse to the output folder for the library OSX32\Debug folder and select the
libMyXPlatformLib.dylib

This will now appear in the list of files for this application.

If we run the application now, this will automatically deploy the files. Alternatively we
can choose the Deploy option.

If you choose Run for the project now, you can see the application compiling, and
then deploying to the Mac and finally running on the Mac.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 16 -

PART 2 – CONSUMING FIREMONKEY VIA A

SHARED LIBRARY.
CREATING A FIREMONKEY LIBRARY
Firstly, congratulations! You now know how to use PAServer and have successfully
written your first multi-platform library and run it on Windows and Mac using the
same code base!! ☺

In this section we are going to move on to building a more complicated library that
will work across languages more easily and we will also use this library from both a
VCL and FireMonkey client. This example will then be used with C# in the final
section of this paper.

To start, we are going to take a current FireMonkey project that has a form in it for
selecting an image. This form has an exposed class function that you pass in a folder
path and it returns back the image you select from that folder.

The code under this form is below

unit formImages;

interface

uses
 System.SysUtils, System.Types, System.UITypes, System.Classes, System.Variants,
 FMX.Types, FMX.Controls, FMX.Forms, FMX.Dialogs, FMX.Layers3D, FMX.Types3D,
 FMX.Effects, FMX.Objects, FMX.Layouts, FMX.Ani, System.IOUtils,
 FMX.Filter.Effects;

type
 TfrmImages = class(TForm)

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 17 -

 Viewport3D1: TViewport3D;
 Layout1: TLayout;
 Layout2: TLayout;
 Layout3: TLayout;
 Rectangle1: TRectangle;
 ReflectionEffect1: TReflectionEffect;
 Layout3DSelection: TLayout3D;
 ImageControl5: TImageControl;
 Layout4: TLayout;
 btnSelect: TButton;
 Layout5: TLayout;
 ReflectionEffect2: TReflectionEffect;
 procedure OnPictureClick(Sender: TObject);
 private
 { Private declarations }
 FCurrentImage : string;
 procedure LoadImages(AFolder : string);
 public
 { Public declarations }
 class function SelectPicture(AFolder : string): string;
 end;

var
 frmImages: TfrmImages;

implementation

{$R *.fmx}

procedure TfrmImages.LoadImages(AFolder: string);
var
 Idx: Integer;
 CurrFile : string;
 FilterPredicate : TDirectory.TFilterPredicate;
 Dir: string;

 procedure LoadInImage(AFileName : string);
 var
 LD : TLayer3D;
 IC : TimageControl;
 begin
 if FileExists(AFileName) then begin
 LD := TLayer3D.Create(Self);
 with LD do begin
 Parent := Layout3DSelection;
 Projection := TProjection.pjScreen;
 Align := TAlignLayout.alLeft;
 Position.X := 0;
 Width := 80;
 OnClick := OnPictureClick;
 end;
 IC := TImageControl.Create(LD);
 with IC do begin
 IC.Parent := LD;
 IC.Align := TAlignLayout.alClient;
 IC.Bitmap.LoadFromFile(aFileName);
 IC.HitTest := False;
 TagString := aFileName;
 end;
 // Add Animation...
 with TFloatAnimation.Create(LD) do begin
 AnimationType := TAnimationType.atIn;
 PropertyName := 'Position.Y';
 Parent := LD;
 StartValue := 0;
 StopValue := -15;
 Trigger := 'IsMouseOver=true';
 Loop := False;
 Delay := 0;
 Duration := 0.25;
 Inverse := True;
 AutoReverse := True;
 end;
 end;
 end;
begin
 // Clear out the current images

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 18 -

 for Idx := Pred(Layout3DSelection.ChildrenCount) downto 0 do
 Layout3DSelection.Children[Idx].Free;

 // Find Each Image
 Dir := Trim(AFolder);

 FilterPredicate := function(const Path: string; const SearchRec: TSearchRec): Boolean
 begin
 Result := (TPath.MatchesPattern(SearchRec.Name, '*.*', False)); // and

 if Result then // Check if it is a image file
 begin
 Result := Pos(LowerCase(ExtractFileExt(SearchRec.Name)),
 DefaultBitmapCodecClass.GetFileTypes) > 0;
 end;
 end;
 // Load that image in.
 for CurrFile in TDirectory.GetFiles(Dir, FilterPredicate) do
 LoadInImage(CurrFile);

 Application.ProcessMessages;
end;

procedure TfrmImages.OnPictureClick(Sender: TObject);
var
 MS: TMemoryStream;
 Idx: Integer;
begin
 MS := TMemoryStream.Create;
 try
 for Idx := 0 to Pred(TFMXObject(Sender).ChildrenCount) do begin
 if TFMXObject(Sender).Children[Idx] is TImageControl then begin
 (TFMXObject(Sender).Children[Idx] as TImageControl).Bitmap.SaveToStream(MS);
 MS.Position := 0;
 ImageControl5.Bitmap.LoadFromStream(MS);
 FCurrentImage := string((TFMXObject(Sender).Children[Idx]).TagString);
 end;
 end;
 finally
 MS.Free;
 end;
end;

class function TfrmImages.SelectPicture(AFolder: string): string;
var
 frm: TfrmImages;
begin
 try
 frm := TfrmImages.Create(Application);
 try
 frm.LoadImages(AFolder);

 if (frm.ShowModal = mrOK) and (frm.FCurrentImage > '') then
 Result := frm.FCurrentImage
 else
 Result := 'None Selected';
 finally
 frm.Free;
 end;
 except
 on e:Exception do begin
 Result := 'ERROR: '+e.Message;
 end;
 end;
end;

end.

The above code exposes the ability to load up a directory of images and create a
layer for each image with a mouse over animation to perform a really nice bounce
effect as the mouse moves over the images.

The code for the fmx (the form file that contains the layout) is as follows

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 19 -

 object frmImages: TfrmImages
 Left = 0
 Top = 0
 Caption = 'Image Selection Viewer [cdecl]'
 ClientHeight = 404
 ClientWidth = 671
 Visible = False
 StyleLookup = 'backgroundstyle'
 object ImageControl5: TImageControl
 Align = alClient
 Position.Point = '(0,137)'
 Width = 671.000000000000000000
 Height = 228.000000000000000000
 TabOrder = 0
 end
 object Rectangle1: TRectangle
 Align = alTop
 Width = 671.000000000000000000
 Height = 81.000000000000000000
 Fill.Color = claBlack
 object Layout1: TLayout
 Align = alTop
 Width = 671.000000000000000000
 Height = 81.000000000000000000
 Margins.Rect = '(5,5,5,5)'
 object Layout2: TLayout
 Align = alLeft
 Position.Point = '(5,5)'
 Width = 17.000000000000000000
 Height = 71.000000000000000000
 end
 object Layout3: TLayout
 Align = alRight
 Position.Point = '(649,5)'
 Width = 17.000000000000000000
 Height = 71.000000000000000000
 end
 object Viewport3D1: TViewport3D
 Align = alClient
 Position.Point = '(22,5)'
 Width = 627.000000000000000000
 Height = 71.000000000000000000
 object Layout3DSelection: TLayout3D
 Position.Point = '(313.5,35.5,0)'
 Width = 627.000000000000000000
 Height = 71.000000000000000000
 Depth = 0.009999999776482582
 Opacity = 1.000000000000000000
 Projection = pjScreen
 Align = alClient
 Quanternion = '(0,0,0,1)'
 end
 end
 end
 object ReflectionEffect1: TReflectionEffect
 Opacity = 0.500000000000000000
 Offset = 0
 Length = 0.500000000000000000
 end
 end
 object Layout4: TLayout
 Align = alTop
 Position.Point = '(0,81)'
 Width = 671.000000000000000000
 Height = 56.000000000000000000
 HitTest = True
 end
 object Layout5: TLayout
 Align = alBottom
 Position.Point = '(0,365)'
 Width = 671.000000000000000000
 Height = 39.000000000000000000
 object btnSelect: TButton
 Position.Point = '(576,7)'
 Width = 80.000000000000000000
 Height = 22.000000000000000000

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 20 -

 TabOrder = 0
 ModalResult = 1
 Text = 'Select'
 object ReflectionEffect2: TReflectionEffect
 Opacity = 0.500000000000000000
 Offset = 0
 Length = 0.500000000000000000
 end
 end
 end
end

Taking this Image Selector form we are going to wrap it up into a library that we can
use on Windows and Mac and also make available for other languages and
development tools to interact with.

First step is to add the form to a new library
project. Using the same options as the simple
library previously described, create a new library
and save the project as “SelectImage”.

Next, add to the project targets so you have 32-bit
Windows, 64-bit Windows and OSX32 and also
add the image selector form.

Now we have all elements we need in the project,
its time to follow a similar process to before and make this functionality available
externally when calling the library. Rather than using StdCall we are going to use
another declaration type cdecl.

StdlCall and cdecl calling conventions are only there for compatibility with Win32
processes as they are ignored completely by the Win64 compiler as there is only one
calling conversion for 64 bit versions; however for 32 and 64 bit code compatibility,
keep them there.

To expose the class function on the form, we need to wrap it into a function that is
exported. To achieve this, we will write a function called SelectPicture. This will
accept the folder path (sent in via PChar) and return the file path of the image
selected.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 21 -

As we are using PChar, we need to do a little more work that using ShortString. We
first need to allocate the memory for the PChar and then we can fill it with the result.
Finally, we need a way to free the memory once its been used. To achieve this we will
have another method called DisposePicture for disposing of the result string.

Finally we need to export the functions from the library.

As we are writing this library for multi-platform use we currently have to prefix the function
name as it is exported on the Mac with a _ (underscore) Hence we have the Prefix which is
defined as below to make it compile with the correct name for the right platforms.

Also, to make the library work on multiple platforms, the exports section for any
methods exposed must be in the same unit of code that methods are declared
in.

With all this written your source unit should look something like this…

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 22 -

library SelectImage;

{ Important note about DLL memory management: ShareMem must be the
 first unit in your library's USES clause AND your project's (select
 Project-View Source) USES clause if your DLL exports any procedures or
 functions that pass strings as parameters or function results. This
 applies to all strings passed to and from your DLL--even those that
 are nested in records and classes. ShareMem is the interface unit to
 the BORLNDMM.DLL shared memory manager, which must be deployed along
 with your DLL. To avoid using BORLNDMM.DLL, pass string information
 using PChar or ShortString parameters. }

uses
 System.SysUtils,
 System.Classes,
 formImages in 'formImages.pas' {frmImages};

const
 // MAC Headers need a _ at the front of the name
 {$IFDEF MACOS}
 Prefix = '_';
 {$ELSE}
 Prefix = '';
 {$ENDIF}
{$R *.res}

 function SelectPicture(AFolder : PChar): PChar; cdecl;
 var
 ResultStr : string;
 Temp: PWideChar;
 begin
 ResultStr := '';
 try
 ResultStr := TfrmImages.SelectPicture(AFolder);
 finally
 Result := StrAlloc(Length(ResultStr));
 Temp := Addr(ResultStr[1]);
 StrCopy(Result,Temp);
 end;
 end;

 procedure DisposePicture(SelectPictureResult : PChar); cdecl;
 begin
 StrDispose(SelectPictureResult);
 end;

 exports
 SelectPicture name Prefix+'SelectPicture',
 DisposePicture name Prefix+'DisposePicture';

begin
end.

Now we have library code written, there is one more thing we need to do to the
library to make it easily accessible for use on the Mac (due to the FireMonkey
elements being compiled into this version) that is to enable runtime packages.

To enable run time packages on the Mac version only (it is not required for the
windows version), first select OSX32 as the target and choose Project > Options from
the main menu.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 23 -

Under the Packages node, choose Runtime Packages. At the top you will see
confirmation of the Target you are setting this option for, with the correct Target
selected, choose “Link with runtime packages” and set it to True

Now we have the library written, compile it for each platform (select the target and
compile). We are now ready to write a client that uses this library.

CONSUMING THE “FIREMONKEY” LIBRARY (LAZY LOADING)

We have already looked at how to consume a method from a library into an
application, and the exact same approach is also applicable now we have
FireMonkey forms within the library. Initially we used static/implicit definitions to
reach the function of the library;

We even introduced the delayed keyword for windows to allow us to lazy load the
library.

There is however another way we can link to a method in a library and we are going
to use this method (Implicit loading) for our second example. To do this we need a
new unit, which we will save as unitLoadDLL. The name of the unit is unimportant,
but will help with locating this through our example. I also suggest you save this to a

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 24 -

common folder as we will use this in a few projects from here and that will provide a
good point for common code to be identified.

To create the new unit, choose File > New > Unit - Delphi

To manually link to the library we need to follow a few simple steps.

1. Define the function / procedure signature as a
type

2. Declare local variables of the types defined. It is also useful to have a global

variable for the Handle to the Library to check if the library has been loaded.

Then at run time have code that

3. Load the Library and get a Handle to the library.
4. Maps the local procedure variables to the loaded library.

Now we know the steps required, we can add this functionality to an application. The
following example has four steps, and encapsulates the loading in an easy-to-call
function, enabling run time checking to see if the library has loaded.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 25 -

unit unitLoadDLL;

interface

uses
 {$IFDEF MSWINDOWS} Windows,{$ELSE} Macapi.CoreServices,{$ENDIF}
 System.SysUtils;

type // 1) Define the methods as types
 TSelectImage = function(AFolder : PChar): PChar; cdecl;
 TDisposePicture = procedure(SelectPictureResult : PChar); cdecl;

var // 2) Define instances of the methods
 SelectImage : TSelectImage = nil;
 DisposePicture : TDisposePicture = nil;
 DllHandle : THandle;
 function LoadLib : Boolean;
 procedure UnloadLib;

implementation

function LoadLib : Boolean;
const
 {$IFDEF WIN32}
 LibraryName = 'SelectImage.dll';
 {$ENDIF}
 {$IFDEF WIN64}
 LibraryName = 'SelectImage.dll';
 {$ENDIF}
 {$IFDEF MACOS}
 LibraryName = 'libSelectImage.dylib';
 {$ENDIF}
begin
 if DllHandle = 0 then begin
 DllHandle := LoadLibrary(LibraryName);
 if DllHandle > 0 then begin //succesfully loaded the DLL
 // 3) Map the local variables to the procedures in the loaded library
 @SelectImage := GetProcAddress(DllHandle,'SelectPicture');
 @DisposePicture := GetProcAddress(DllHandle,'DisposePicture');
 end
 end;
 Result := DllHandle <> 0;
end;

procedure UnloadLib;
begin
 if DLLHandle <> 0 then begin
 FreeLibrary(DLLHandle);
 DllHandle := 0;
 end;
end;

{$IFDEF MSWINDOWS}
initialization
 LoadLib;
finalization
 UnloadLib;
{$ENDIF}
end.

You will also notice that the above unit has the Initialization and finalization sections
defined for use on Windows.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 26 -

This allows the program to automatically call the functions to handle the loading and
freeing on the library. These can equally be called from within the code at any point,
and we will look at doing exactly that with the FireMonkey version.

Now we have the ability written to link to the library, let us look at consuming it into
multiple projects, starting with a VCL application.

WRITING A VCL CLIENT FOR A FIREMONKEY LIBRARY

If we have current applications that we want to expand with FireMonkey or we want
to keep smaller (binary sized) windows only applications, then we may want to use
the FireMonkey images selector just written in a VCL application. The first example
looks at doing just this. We will then use this same library with a FireMonkey client to
enable a Windows and Mac version, then finally call the library from a C# client
application.

Start by adding to the current project group a new VCL application.

We are going to design a similar app to the first example, with a button and a Label.
The only difference this time being that we will use an OpenPictureDialog to select a
file from a folder, and then pass in the folder location to show all images.

Add to the form the OnClick event as defined in the code below (to do this double
click on the button) along with the uses to the unitLoadDLL that references the
Library functions. Finally, we need to initialize GDI+ as this is not loaded
automatically by a VCL application. This is the job of the calling application.

For more on GDI+ visit http://msdn.microsoft.com/en-us/library/ms534077(v=vs.85).aspx

GDI+ is automatically available in a FireMonkey application as FireMonkey is
designed from the ground up to call this code. To initialize GDI+ with VCL you just
need to add Winapi.GFIPOBJ to the uses clauses. As we have already have a simple
version running, let’s quickly jump to the code for the second example in this paper.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 27 -

unit Unit1;

interface

uses
 Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants,
 System.Classes, Vcl.Graphics, Vcl.Controls, Vcl.Forms, Vcl.Dialogs,
 Vcl.StdCtrls, Winapi.GDIPOBJ,
 Vcl.ExtDlgs;

type
 TForm1 = class(TForm)
 Button1: TButton;
 lblImage: TLabel;
 OpenPictureDialog1: TOpenPictureDialog;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.dfm}
uses unitLoadDLL;

procedure TForm1.Button1Click(Sender: TObject);
var
 pWorkInput, pReturn : PChar;
 ResultStr : string;
begin
 if not OpenPictureDialog1.Execute then
 Exit;

 if DllHandle > 0 then begin
 ResultStr := ExtractFilePath(OpenPictureDialog1.FileName);
 pWorkInput := Addr(ResultStr[1]);
 // Need to manage the memory of pReturn as its managed by the DLL
 pReturn := SelectImage(pWorkInput);
 try
 lblImage.Caption := pReturn;
 finally
 // Tell the DLL its Pointer is done with!
 DisposePicture(pReturn);
 end;
 end else
 MessageDlg('DLL Not loaded',mtInformation,[mbOK],0);
end;

end.

Immediately you will see that this code is very similar to the initial version we wrote
for passing a string around. This time there are additional values for managing the
PChar’s but other than that, we check the library has loaded and call the method.

The check to DllHandle > 0 could equally be replaced with LoadLib to achieve the
same result.

On running the application you should be able to click on the button and see the
following.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 28 -

WRITING A FIREMONKEY CLIENT TO USE A LIBRARY THAT USES FIREMONKEY
With the VCL application written, we can share our non-visual code with a new
FireMonkey application. In fact, we will almost make a duplicate application.

Just like with the VCL example application we can use the same common controls
like TButton, TLabel, but this time we will use a TOpenDialog as these isn’t a
TOpenPictureDialog within FireMonkey; the same effect as an OpenPictureDialog
can easily be achieved by setting the OpenDialog filter property.

As you can see from the code below the FireMonkey application is almost identical
to the VCL example. The only difference is the choice of where to “unload” the
library. On the FireMonkey project we have chosen to impalement the FormClose to
release the library.

Note: Due to the platform; the initialization on Mac must not call the LoadLibrary
until the main application form is initialized, hence the function encapsulated this
call. This seems to be similar to start up routines for ISAPI libraries and their load
sequences being slightly different to typical windows debug versions of the same
applications.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 29 -

unit formFmxApp;

interface

uses
 System.SysUtils, System.Types, System.UITypes, System.Classes, System.Variants,
 FMX.Types, FMX.Controls, FMX.Forms, FMX.Dialogs;

type
 TForm2 = class(TForm)
 lblImage: TLabel;
 btnSelect: TButton;
 OpenDialog1: TOpenDialog;
 procedure btnSelectClick(Sender: TObject);
 procedure FormClose(Sender: TObject; var Action: TCloseAction);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form2: TForm2;

implementation

{$R *.fmx}
uses unitLoadDLL;

procedure TForm2.btnSelectClick(Sender: TObject);
var
 pWorkInput, pReturn : PChar;
 ResultStr : string;
begin
 if not OpenDialog1.Execute then
 Exit;
 try
 if LoadLib then begin
 ResultStr := ExtractFilePath(OpenDialog1.FileName);
 pWorkInput := Addr(ResultStr[1]);
 // Need to manage the memory of pReturn as its managed by the DLL
 pReturn := SelectImage(pWorkInput);
 try
 lblImage.Text := pReturn;
 finally
 // Tell the DLL to free it!
 DisposePicture(pReturn);
 end;
 end else
 MessageDlg('DLL Not loaded',TMsgDlgType.mtInformation,[TMsgDlgBtn.mbOK],0);
 except
 on e:exception do begin
 ShowMessage('Error : '+E.Message);
 end;
 end;
end;

procedure TForm2.FormClose(Sender: TObject; var Action: TCloseAction);
begin
 UnloadLib;
end;

end.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 30 -

Immediately you notice that the platform specific call for winapi.GDIPOBJ is not
required within the FireMonkey application, hence it is not in the code. Other than
that the code is exactly the same.

This project is now ready to run on Windows 32bit and 64bit, however to make it
ready for deployment to the Mac we need to set the application to use
RuntimePackages (in the same way we did with the library).

So, select the target platform for OSX and again, set Use Runtime Packages to true
in the project options. You should now be able to build and run and test this
application on Windows and Mac.

Mac OS X example of the app running.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 31 -

PART 3 – INTEGRATING WITH C++
Although the primary language used so far in this paper has been Delphi, multi-
platform applications can also be written using the C++ language with C++Builder
from Embarcadero as this also includes the ability to compile for multiple platforms.

Following on from earlier where we got Delphi VCL applications working with
FireMonkey, in this section we will quickly see how using the same techniques you
can improve a C++Builder VCL application by integrating it with a FireMonkey
library. Even though we could recreate the Library from the previous example with
C++Builder and FireMonkey, we will use the same library, but this time with a VCL
C++Builder application.

Even though we only have Delphi application in our project group, there are no
restrictions on adding in a C++Builder application to the same project group.

Following the same steps as before, add a new C++ VCL Forms Application to our
project group by right clicking on the project group and choose “Add New Project”
-> “C++Builder Projects” -> “VCL Forms Application”

Add to the form in exactly the same way the label, button and OpenPictureDialog,
remembering to rename the label to lblImage.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 32 -

Now we have our basic shell recreated, the next steps are to add in the code for
loading the library and calling the methods exposed in the library. To save writing
and testing code to recreate the functionality we have already working, we are going
to quickly explore a feature of C++Builder that allows use of Delphi code in a
C++Builder application. This is achieved by “Making” a header file for the Delphi
unit so we can bring it into the scope of the C++Builder application.

To use the unitLoadDLL.pas file created previously, we first need to make sure (due
to the file paths for the libraries being hard coded in our example) that we save the
project to the same directory level as the previous demos so the pathing to locate
the library is still correct at run time. Save the project (call it something like
GetImageFromFMDLLCpp) into a new folder in the same directory level that the
Delphi VCL and FireMonkey examples were created into.

Now we have the project saved at the right location to locate the libraries, its time to
generate a C++ header for linking to the Delphi unit; this is quite straightforward.
First, add the unit (unitLoadDLL.pas) to the project. Secondly, right click on the
project and choose “Make”.

Having run the Make option, a new hpp file will be made for the unitLoadDLL.pas file
and will be created at the same location as the .pas file. This header file can be
added to the includes section of the cpp unit.

 #include "unitLoadDLL.hpp"

To use FireMonkey via a library in a C++ application the same rules apply; you need
to initialize the GDI+ from the calling application; (remember its already initialized if
you use FireMonkey Application instead) to do this just add the following include to
the cpp unit. This is again done using the Winapi.GDIPOBJ.

 #include "Winapi.GDIPOBJ.hpp"

Now all we need to do is add in the OnClick event for the button push and we have
our project working.

Once these steps are followed your code should look something like the following
and produce the same results as the Delphi VCL example earlier.
//--

#include <vcl.h>
#pragma hdrstop

#include "Unit3.h"
#include "unitLoadDLL.hpp"
#include "Winapi.GDIPOBJ.hpp"

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 33 -

//--
#pragma package(smart_init)
#pragma resource "*.dfm"

TForm3 *Form3;
//--
__fastcall TForm3::TForm3(TComponent* Owner)
 : Vcl::Forms::TForm(Owner)
{
}

//--
void __fastcall TForm3::Button1Click(TObject *Sender)
{
 PChar pWorkInput, pReturn;
 String ResultStr;

 if (! OpenPictureDialog1->Execute()) {
 return;
 }

 if (LoadLib) {
 ResultStr = ExtractFilePath(OpenPictureDialog1->FileName);
 pWorkInput = ResultStr.c_str();

 // Need to manage the memory of pReturn as its managed by the DLL
 pReturn = SelectImage(pWorkInput);
 try {

 lblImage->Caption = pReturn;
 }
 __finally
 {
 // Tell the DLL its Pointer is done with!
 DisposePicture(pReturn);
 }

 }
}
//---
void __fastcall TForm3::FormClose(TObject *Sender, TCloseAction &Action)
{
 UnloadLib;
}
//---

PART 4 - INTEGRATING WITH C#
FireMonkey gives some excellent capabilities for Stunning HD and 3D applications,
and the great news is that its not only Delphi and C++Builder applications that can
benefit from FireMonkey.

Using the techniques learned in this paper, you now have a library that is capable of
being shared with many other developer tools such as C# or Visual C++ applications
as well!

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 34 -

The following code was written using Visual Studio 2010 professional and will use C#

Using Visual Studio, choose File > New > Project.
Let’s select a Visual C# - Windows Forms Application.

Save this project to a folder called CSharpApp in your FireMonkey Library parent
folder.

Within the project you will have a new, blank form. We are going to see how similar
C# is to the Delphi language. Now we need to add the C# equivalent of the same 3
controls as the previous demo. Using the simply add to the Tool Box locate and add
the following

• label
• button
• openFileDialog

Update the button text property to be “Get File” and the label text to show <> for
no data.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 35 -

We should now have a form that looks something live the image shown below:

Before we can use the Library we need to write some code that allows us to use the
library.

To do this we can easily create a class that will manage the interface to the library.
This will then give a simple way to call the library within the C# code.

Firstly we need to add the following uses at the top of the form to access the ability
to call DllImport.
 using System.Runtime.InteropServices; // DLLImport

Secondly we need to write a class – The following is out class called
FMLibrarayLoader which we can reference later from main code.

 public class FMLibraryloader
 {

 }

To this class we need to add the external methods, followed by their return type and
then their parameters. (as like any other C# method.

 public class FMLibraryloader
 {
 public static extern IntPtr SelectPicture(String AFolders);
 public static extern void DisposePicture(IntPtr SelectPictureResult);
 }

Finally, we need to add to the methods where they come from. This is done by
adding the [attributes] for the Dll Import with the location, CharSet and Calling
Convention.

 public class FMLibraryloader
 {
 [DllImport(@"..\..\..\..\..\DLL\Win32\Debug\SelectImage.dll", CharSet =

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 36 -

CharSet.Unicode, CallingConvention = CallingConvention.Cdecl)]
 public static extern IntPtr SelectPicture(String AFolders);

 [DllImport(@"..\..\..\..\..\DLL\Win32\Debug\SelectImage.dll", CharSet =
CharSet.Unicode, CallingConvention = CallingConvention.Cdecl)]
 public static extern void DisposePicture(IntPtr SelectPictureResult);

 }

Now we have the helper class in place, we can write the code to call the methods.

On the form, double click on the button to get the C# version of an OnClick event
and enter the following code

 private void button1_Click(object sender, EventArgs e)
 {
 openFileDialog1.Filter = "JPEG Images|*.jpg|GIF Images|*.gif|BITMAPS|*.bmp";
 if (openFileDialog1.ShowDialog() == DialogResult.OK)
 {
 // Get a folder to show images from.
 String fFolder = Path.GetDirectoryName(openFileDialog1.FileName);

 // Create the output variable.
 IntPtr pOut;

 // Get the PChar(string) from the DLL for the selected file.
 pOut = FMLibraryloader.SelectPicture(fFolder);

 // Show the contents of the String Pointer
 lblSelected.Text = Marshal.PtrToStringAuto(pOut);

 // Release the memory for the string from the DLL
 FMLibraryloader.DisposePicture(pOut);
 }
 }

As Path is in System.IO we need to add the following to the using section as well.
using System.IO;

Once you have carefully checked your path for the DLL matches that in the
DLLImport attributes, you are ready to run your applications.

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 37 -

The Form1.cs file should now read as follows: This code will allow the end user to
select an image, and then pass the folder to the library for it to show the FireMonkey
form and return the result.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;// Loads GDI+
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Runtime.InteropServices; // DLLImport
using System.IO;

namespace CSharpToFireMonkeyDLL
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 openFileDialog1.Filter = "JPEG Images|*.jpg|GIF Images|*.gif|BITMAPS|*.bmp";
 if (openFileDialog1.ShowDialog() == DialogResult.OK)
 {
 // Get a folder to show images from.
 String fFolder = Path.GetDirectoryName(openFileDialog1.FileName);

 // Create the output variable.
 IntPtr pOut;

 // Get the PChar(string) from the DLL for the selected file.
 pOut = FMLibraryloader.SelectPicture(fFolder);

 // Show the contents of the String Pointer
 lblSelected.Text = Marshal.PtrToStringAuto(pOut);

 // Release the memory for the string from the DLL
 FMLibraryloader.DisposePicture(pOut);
 }
 }

 }

 public class FMLibraryloader
 {
 [DllImport(@"..\..\..\..\..\DLL\Win32\Debug\SelectImage.dll", CharSet =
CharSet.Unicode, CallingConvention = CallingConvention.Cdecl)]
 public static extern IntPtr SelectPicture(String AFolders);

 [DllImport(@"..\..\..\..\..\DLL\Win32\Debug\SelectImage.dll", CharSet =
CharSet.Unicode, CallingConvention = CallingConvention.Cdecl)]
 public static extern void DisposePicture(IntPtr SelectPictureResult);

 }

}

Developing and Using Win/Mac Libraries

Embarcadero Technologies, Inc. - 38 -

SUMMARY

FireMonkey is amazingly powerful and is easily shared with other applications and
developers through the techniques we have covered.

In this paper, we have seen how to encapsulate non-visual and visual business logic
into libraries. We have then taken these libraries and used them in VCL applications,
C# applications and also in using Delphi (or we could use C++Builder) with
FireMonkey have simply compiled the applications to be Win/Mac applications that
target both platforms.

Overall we have seen that FireMonkey provides a great framework for enhancing the
development we are doing today whilst leveraging the powerful access to the CPU
and GPU that FireMonkey provides.

For more about FireMonkey and RAD Studio please follow the links below.

USEFUL LINKS
SOURCE

Full code available for download from
http://cc.embarcadero.com/item/28615

VIDEOS
VCL to FireMonkey
http://blogs.embarcadero.com/stephenball/2011/11/01/vcl-to-firemonkey-
video/

Using the Power of FireMonkey to enhance C#
http://blogs.embarcadero.com/stephenball/2011/11/01/using-firemonkey-to-
enhance-c-sharp/

EMBARCADERO URL’S
FireMonkey
http://www.embarcadero.com/products/firemonkey
http://embt.co/firemonkey-info

RAD Studio
http://www.embarcadero.com/products/rad-studio
Delphi
http://www.embarcadero.com/products/delphi
C++Builder
http://www.embarcadero.com/products/cbuilder

Embarcadero Technologies, Inc. is the leading provider of software tools that
empower application developers and data management professionals to design,
build, and run applications and databases more efficiently in heterogeneous IT
environments. Over 90 of the Fortune 100 and an active community of more than
three million users worldwide rely on Embarcadero’s award-winning products to
optimize costs, streamline compliance, and accelerate development and innovation.
Founded in 1993, Embarcadero is headquartered in San Francisco with offices
located around the world. Embarcadero is online at www.embarcadero.com.

